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Abstract

In this thesis, two problems involving solidification have been studied. The first is the

solidification of a binary alloy pulled horizontally at a prescribed, constant rate. The

second is the solidification of a ternary alloy in the vertical directional solidification

setting.

In the binary alloy case, a configuration in which the solid, liquid and two-phase

(solid–liquid) regions are separated by the stationary two-dimensional interfaces is

considered. The self-similar solutions of the governing boundary-layer equations are

obtained, and their parametric dependence analysed asymptotically. The effect of the

boundary-layer flow on the physical characteristics is determined. It is found that the

horizontal pulling and the resulting flow in the liquid enhance the formation of the

two-phase region.

In the ternary alloy case, we identify a steady non-convecting state of during the

primary solidification of ternary alloys. A model, which includes the effects thermal

and solutal diffusion, segregation effects and finite speed of background solidification

is considered. Combinations of various types of boundary conditions have been intro-

duced, namely F–C, C–F and F–F, where C and F refer to the solute concentration and

solutal flux fixed at the top or bottom boundary of the system. In the regime of the

same Lewis numbers and segregation coefficients of solutes, explicit solution using hy-

pergeometric functions was identified. In the limit of large Lewis and the limit of near

constant concentration profile of one solute asymptotic solutions were presented. The

behaviour of the concentration profiles was analysed with respect to a static stability

scenario, i.e. distribution of a mass within liquid.

Key words: solidification of ternary alloys, solidification of binary alloys, mushy

layers, hypergeometric functions, self-similar solutions, static stability, asymptotic

approximations

AMS classification: 80A22, 76M45, 35C20





Abstrakt

V tejto práci sú študované dva problémy, ktoré sa týkajú tuhnutia viaczložkových zmesí.

Prvým je tuhnutie binárnej zmesi posúvanej horizontálnym smerom predpísanou (konš-

tantnou) rýchlosťou. Druhým je tuhnutie ternárnej zmesi v konfigurácii vertikálneho

smerového tuhnutia.

V binárnom prípade je uvažovaná situácia, pri ktorej tuhá, kvapalná aj dvojfázová

zóna sú oddelené dvojrozmerným stacionárnym interfejsom. Boli získané podobnostné

riešenia rovníc pre problém s hraničnou vrstvou. Následne bola skúmaná ich para-

metrická závislosť pomocou asymptotických metód. Určili sme vplyv toku v hraničnej

vrstve na koncentračnú štruktúru tuhnúceho systému. Ukázalo sa, že horizontálny ťah

a následne vznikajúci tok podporujú tvorbu dvojfázovej zóny.

V ternárnom prípade sme študovali primárne tuhnutie ternárneho systému v ustálenom

stave bez gravitačnej konvekcie. Sformulovaný model zahŕňa difúziu tepla a prímesí,

segregačné efekty a konečnú rýchlosť tuhnutia systému. Pre tento problém sme uvažo-

vali niekoľko rôznych typov okrajových podmienok, predpisujúcich difúzny tok prímesí

a koncentrácie prímesí na okrajoch systému. Pre prípad rovnakých Lewisových čísel

a segregačných koeficientov prímesí sme získali explicitné riešenia vyjadrené pomocou

hypergeometrických funkcií. V limite veľkých Lewisových čísel a konštatného koncen-

tračného profilu jednej z prímesí sme získali rovnomerné asymptotické riešenia. Po-

mocou získaných koncentračných profilov sme analyzovali statickú stabilitu ternárneho

systému.

Kľúčové slová: tuhnutie ternárneho systému, tuhnutie binárneho systému,

dendritická zóna, hypergeometrické funkcie, samopodobné riešenie, statická stabilita,

asymptotické aproximácie

AMS klasifikácia: 80A22, 76M45, 35C20
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1 Introduction

Phase change is a phenomenon which occurs on different scales and in various fields.

In nature, the processes involving solidification are present in the Earth’s core [14], the

shelf ice formation [31] or the sediment formation from magma [3], for a recent review,

see [8]. A reverse process of solidification (melting and dissolution) can be observed as

thawing of permafrost [15]. Apart from nature, there are direct applications in industry

such as casting deformity prediction in metallurgy [12] and the modelling of cell cry-

opreservation in biology [10]. The solidification problems can be formulated within the

framework of partial differential equations with a moving boundary of infinitesimally

small thickness [13].

During solidification of a pure material, the solid–liquid interface may become ther-

mally supercooled, which enables nucleation as heat is removed from the interfacial

regions by convection or conduction (or both). In the case of solidifying a mixture of

two or more components, the solidification interface may be exposed to constitutional

supercooling, which is caused by segregation of solute into the liquid region. Rejected

solute will lower the melting point in the boundary layer of the liquid, thus widening

the freezing range of the alloy. This effect (see e. g. [30]) causes the solidifying interface

to become morphologically unstable, giving rise to the formation of dendrites. Regions

containing liquid and solid phases with dendritic structure are called mushy regions

(see [39] or [8]).

1.1 Fixed plate cooling and solidification

Experimental study [21] concerning cooling and solidification of binary alloy from

cooled plate conducted on aqueous solution of NaNO3 describes a mixed phase of

solid and melt, mushy layer, where the planar interface is morphologically unstable.

results are found to be in good agreement with the observed behaviour in [21] of aque-

ous NaNO3 solutions. A model [37] is in good agreement with the observed behaviour

explaining the evolution of a binary mixture from a fixed cooled boundary. The model

allows self–similar solutions with both interfaces following the square root law. The

numerical results shows that the structure of mushy layer varies considerably with the

change of physical parameters of the solidifying system, namely cooling temperature
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and initial concentration of solute.

A model for diffusive solidification of a ternary alloy from a cooled boundary was

presented by [5]. The model consists of a liquid layer, a primary mushy layer and

a secondary mushy layer in accordance with the experimental study on the ternary

system mixture H2O–KNO3–NaNO3 in [2]. The model includes the effects of thermal

and solutal diffusion. Throughout the primary mushy layer the thermodynamic equi-

librium is maintained by imposing a linear liquidus constraint between temperature

and concentration fields. leaving on additional degree of freedom. The experimental

study of [34] on the same ternary system investigated convective scenario in which the

secondary mushy layer was both thermally and compositionally stably stratified and

the convection originated in the primary mush and the liquid layer due to statically

unstable density stratification.

1.2 Lateral directional solidification

A setup related to experimental continuous spin casting processes was analysed in [29]

and [26]. The two-dimensional boundary layer flow and solidification of a binary alloy

over a horizontally moving plate maintained at constant temperature was analysed. A

novel feature that distinguishes this setting from the fixed-plate setups is the occurrence

of a non-planar interface between the solid and liquid regions.

The model presented in [27] (the original contribution of the author of this thesis)

includes liquid, mushy and solid layers and identifies two-dimensional steady self-similar

solutions for the system. The effects of boundary flow on the position of the interfaces

and solidification speed were quantified. An asymptotic analysis of the parametric de-

pendence of the characteristics of the solidifying system was performed. A comparison

to the case of solidification from a cooled boundary analysed in [37] showed that the

formation of a mushy layer in the present setup was more prominent. A generalized

model containing two different mushy zones, dispersed and packing, was analysed in

[33].

1.3 Vertical directional solidification

Directional solidification of binary mixtures is extensively described in [13]. A model

which enables analysis of convective instabilities was developed in [4] by separating
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mushy layer from the liquid region above and the solid beneath by fixing its thickness. It

has been proved that convective instability in the mushy layer is generally subcritically

unstable.

The study of nonlinear development of oscillatory convective instability in the two-

dimensional mushy layers was performed in [17], [18]. They found that for both travel-

ling and standing waves oscillatory mode could be supercritically stable, depending on

the sensitivity of permeability of the mushy layer. Weakly nonlinear interactions be-

tween steady and oscillatory convection were analysed by [18] revealing a rich topology

of convective transitions.

In [6] the directional solidification of ternary mixtures was studied and characterisa-

tion of convective regimes in terms of two Rayleigh numbers, corresponding to primary

and secondary mushy layers, was provided. The convection in the primary mushy layer

was found to generally induce a flow (comparable in magnitude) in the liquid layer,

but only a weak flow in the secondary layer. On the other hand, convection in the

secondary mush would induce flow in the primary mush and the liquid layer if primary

layer was not sufficiently stably stratified.

In the presence of multiple diffusive fields convection may arise even though fluid

is statically stably stratified, i.e. the fluid density decreases with height. This phe-

nomenon is called double-diffusive convection and originates due to a difference in

diffusivities of various fields and is described in [35]. This feature is not present in

binary mushy layer systems due to a coupling of thermal and solutal fields through

the liquidus constraint. However, in ternary (or multicomponent) solidifying systems

double diffusive effects may arise.

To identify the type of convective instability, a single primary mush model was

studied in [7], [20]. Under a parametric reduction, namely zero speed of macroscopic

solidification, zero Stefan number and by omitting solute segregation effects, linear

stability problem associated to base state solution was analytically solved. In this case,

even though fluid was statically stably stratified, an instability mode was present as the

result of interactions between convection, solidification and diffusion processes within

the primary mushy layer. Under the parametric reductions, described above this mode

develops only when the diffusivities of the two solutes differ. The numerical results in

[7] on the full model describe the situation when statically unexpected direct modes can

3



occur even in cases when the diffusivities of the two solutes are the same. Therefore,

the exceptional direct mode found in their full numerical model must necessarily be

distinct from the one described in reduced parametric setup. A special case of this

model is a binary mixture solidification model described in [38].

In [19] the stability of a primary mushy layer during the directional solidification

of a ternary alloy is analysed. They developed a primary mush model, which contains

phase-change effects due to latent-heat release, solute rejection and background solidifi-

cation, which were not considered in the analytically solved model from [7]. The model

identifies novel convective instabilities, both direct and oscillatory, which are present

under statically stable conditions. An asymptotic analysis was carried out with respect

to small thickness of primary mush with small growth rates. A physical explanation for

these instabilities was proposed, indicating that the instability mechanisms generally

involve different rates of solute diffusion, different rates of solute rejection and different

background solute distributions induced by the initial alloy composition.

In [22] we considered a number of parametric reductions under which the base

state solution, with non-zero speed of macroscopic solidification and partial solute

segregation, can by analytically expressed. The effect of different liquid and solid

conductive properties has been observed to split mushy layer into two distinct zones

the bottom one with large representation of solid phase and top one consisting of

mainly melt. The most general case corresponded to the same diffusion properties of

solutes and also solute rejection rates. Parametric conditions for the existence of base

state solution were provided. A linear character of the static stability curves in the

parametric space spanned by initial compositions was established.

In chapter §4, which is an extension of [23] (the original contribution of the author

of this theses) we consider directional solidification of ternary mixtures, incorporating

thermal and solutal diffusion, segregation effects and finite speed of the background

solidification. Apart from the boundary conditions prescribing constant concentrations

on the top and the bottom of the primary mush, we also consider a boundary condition

setup with fixed concentration gradients at the bottom. We present analytical solutions

for the steady non-convecting state, building on the results from [22], which consider

the Lewis numbers and the segregation coefficients equal for both solutes.

The dissertation is organized as follows. In §2 we provide a general introduction
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to alloy solidification and describe equations governing a mushy layer in binary alloys,

with governing equations formulated in a general frame of reference. In §3 we describe

solidification of binary alloy with horizontally moving substrate, based on [27]. In §4

we consider a model for the solidification of ternary alloys. In §5 the model is reduced

to a primary mush model, following [7], [19], [22], [20] and [23], while considering novel

boundary conditions, and then we provide asymptotic results for the ternary base state

solution.
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2 Solidification of multicomponent alloys

2.1 Phase diagram

A component is a chemically recognizable species. Each component or their combina-

tion can exhibit a number of different phases. A phase is a portion of a system that

has uniform physical and chemical characteristics.

A multicomponent alloy is a thermodynamic system consisting of n components.

For simplicity we will present conservation equations and phase diagram for the case

n = 2, i.e. a binary alloy. We will refer to the components of binary system A and B,

as solvent and solute respectively. A binary phase diagram represents the linkage be-

tween temperature and concentration of solute, which indicates the equilibrium phases

present at a given pressure, temperature and concentration. All states, which system

in thermodynamic equilibrium can exhibit are in the phase diagram. A typical binary

system, as one sketched in figure 1, consist of phases formed by solids of component

A, B and mixture of solid solutions of components A and B denoted α, β and α + β

respectively; of phases where liquid and solid, composed either from A or B component,

are both present denoted α + L and β + L respectively; and of liquid phase L.

Curves depicted in a binary phase diagrams represent boundaries between different

states which system can exhibit. Most important features of a phase diagram are:

Liquidus - The line separating liquid-phase field from the liquid-plus-solid phase

Solidus - The line separating the solid-phase field from liquid-plus-crystals phase field.

Solvus - The line separating the single-solid phase field from mixture of solid solutions

phase field.

Eutectic point -The point on a phase diagram where the maximum number of allowable

phases are in equilibrium. In this point the chemical composition and temperature

corresponds to the lowest melting point of a mixture of components.

Eutectic isotherm - The horizontal solidus line at eutectic temperature TE.
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2.2 Governing equations for binary mushy layers

2.2.1 Cooling from a fixed boundary

Governing equations for solidification of a binary mixture are described in [39]. These

equations are independent of the internal morphology of growing dendrites, thus being

suitable for a wide range of solidifying systems. The justification for this continuum

approach is the fact that the distance between the dendrites is small compared to the

height of the mushy layer as can be seen in figure 2. The governing equations represent

the local conservations for heat and solute. This approach assumes the homogeneous

distribution and morphology of dendrites. The physical properties of the mush are

functions of the local solid fraction φ (x, t). The thermal properties of the mush are

approximated by the average of properties of solid and liquid properties as

km = (1− φ) kl + φks, (2.1a)

(ρCp)m = (1− φ) ρlCpl + φρsCps, (2.1b)

where the subscripts l and s denotes the liquid and the solid phases, respectively, k

represents thermal conductivity, ρ density and Cp specific heat.

Local conservation of heat and solute, denoting the solute concentration by C, the

temperature by T take the form

(ρCp)m
∂T

∂t
=∇· (km∇T ) + ρsL

∂φ

∂t
, (2.2a)

(1− φ)
∂C

∂t
=∇· (D (φ)∇C) + (C − Cs)

∂φ

∂t
, (2.2b)

where D (φ) = D (1− φ) is the solutal diffusivity of the two-phase mush, D is the

liquid solute diffusivity and L is the latent heat. The last term on the right-hand side

of heat equation, ρsL∂φ/∂t, represents the release of latent heat. The last term on

the right-hand side of solute equation, (C − Cs) ∂φ/∂t, represents the release of solute

during solidification.

2.2.2 Governing equations in a general frame of reference

In [32] the governing equations fora binary mush in the general frame of reference

are presented. The formulation involves the interface velocity w , the velocity of the

dendrites v and the fluid velocity u. The solid velocity is equal to the velocity of a
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point embedded in the dendrites. The fluid velocity is an average over the fluid portion

of a representative region. The total flux vector is defined as q = χu + φv, where φ

and χ = 1− φ are the local solid and liquid volume fractions in the mush.

The material derivatives with respect to velocities v, u and q are denoted as Ds,

Dl, D, respectively. In the general frame of reference, the governing equations take the

form

(ρCp)m
DT

Dt
=∇· (km∇T ) + ρsL

Dsφ

Dt
, (2.3a)

DC

Dt
− φDsC

Dt
=∇· (D (φ)∇C) + (C − Cs)

Dsφ

Dt
, (2.3b)

T = TM + ΓC, (2.3c)

q − v = −Π (φ)

µ

(
∇p+ ρgk̂

)
, (2.3d)

∇·q = 0, (2.3e)

where Π (φ) is the permeability of the mush, which is a prescribed function of φ, µ is

the dynamic viscosity, p is pressure, TM is the melting temperature of component A

and Γ is liquidus slope for component B. Equation (2.3c) represents a linear approx-

imation of liquidus. This approximation is appropriate for many systems, including

aquaeous solutions Equation (2.3d) governs velocity field, its name is Darcy equation,

and describes the flow of a fluid through a porous medium.

When v = 0 equations (2.3a, 2.3b) reduce to (2.2a, 2.2b) representing the case of

cooling from a fixed boundary.

When v = −V k̂ the case of directional solidification with the pulling speed V is

obtained.

When v = −U0î, the case of the solidification over the horizontally moving substrate

is obtained, related to the continuous spin casting processes studied for example in [29]

and [26]. §3, which builds on [27], considers this setup.
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Figure 1: Binary phase diagram. This plot represents a binary phase diagram, where the

vertical axis represents temperature and the horizontal axis represents the concentration of

B component starting at zero in the left corner (phase A) and ending in the right corner (

phase B). Regions separated by The liquidus, solidus, solvus and eutectic isotherm curves are

denoted as L (liquid region), α ( region containing A component rich solid α ), α+L ( region

containing A component rich solid α and liquid ), α+ β (region containing solid formed from

mixture of components A and B); and analogous regions for B component.
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Figure 2: A binary mushy layer. This photograph, taken from [39], depicts the individual

dendrites growing from the aqueous solution of NH4Cl. The typical spacing between the

dendrites shown is about 0.5 mm, while the depth of the mushy layer is a few centimeters.
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3 Solidification and flow of a binary alloy over a mov-

ing substrate

This chapter is based on our paper [27].

3.1 Model formulation

The region x∗ > 0, z∗ > 0 is filled with a binary alloy with the temperature and solute

concentration T ∗∞ and C∗∞ as z∗ → ∞, respectively. The solidification occurs from

the cooled substrate z∗ = 0, which moves horizontally at a constant speed U∗0 > 0.

The substrate is maintained the temperature T ∗L(C∗0), which by liquidus constraint

corresponds to a concentration C∗0 . We assume that T ∗L(C∗0) is above the eutectic tem-

perature T ∗E and below T ∗L(C∗∞). We consider a situation where the binary-alloy mushy

region forms between solid and liquid regions. We denote positions of the solid–mush

and the mush–liquid interfaces as z∗ = a∗(x∗) and z∗ = b∗(x∗), respectively. We denote

the local volume fraction of solid phase as φ. Note that even though interfaces are

stationary, the solid phase moves together with the substrate. The situation described

above is illustrated in figure 3.

Figure 3: A sketch for the geometry of the solidification of a binary alloy over a horizontally

moving substrate.
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The governing equations for temperature, concentration and solid fraction fields in

mushy layer are based on local conservation laws of heat and solute derived in [32].

In general, the velocity of solid dendrites, interstitial fluid and propagation rate of

interfaces are distinct. The pressure in mushy layer is purely hydrostatic and there is

no flow of interstitial fluid relative to the solid dendrites. We denote the flow velocity

as u∗ = (u∗, w∗) in the liquid and mushy regions, and the velocity of the solid phase as

v∗ = U∗0 î, where î is unit vector in horizontal direction. In the mush, the velocity field

is u∗ = v∗. A simple binary phase diagram used, is depicted in figure 4. We assume

that there is no mass diffusion in the solid and that the solid is free of solute. Then

the liquidus constraint in the takes the form

T ∗L (C∗) = T ∗L (C∗0)− Γ∗ (C∗ − C∗0) . (3.1)

Figure 4: Idealized binary phase diagram for a system with a mushy region, used in this

chapter. A typical solidification path (solid line with arrows) is depicted in C∗ vs. T ∗ plane.

In the far boundary

T ∗ = T ∗∞, C
∗ = C∗∞, u

∗ = U∗∞ as z∗ →∞, (3.2)
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where T ∗∞, C∗∞ and U∗∞ are the prescribed constants. In the liquid, the dimensional

governing equations are

(u∗·∇∗)u∗ = −∇∗p∗ − ρ∗g∗k̂ + µ∗∇∗2u∗, (3.3a)

u∗ ·∇∗ T ∗ = κ∗l∇∗2T ∗, (3.3b)

u∗ ·∇∗ C∗ = D∗∇∗2C∗, (3.3c)

∇∗·u∗ = 0, (3.3d)

where (3.3a,3.3d) are incompressible Navier–Stokes equations, and (3.3b) and (3.3c) are

advection–diffusion equations governing temperature and concentration, respectively.

At the mush–liquid interface at z∗ = b∗ (x∗)

U∗0L
∗
v

db∗

dx∗
φb∗− = k̄∗(φ)

∂T ∗

∂z∗

∣∣∣∣
b∗−
− k∗l

∂T ∗

∂z∗

∣∣∣∣
b∗+

, (3.4a)

U∗0
db∗

dx∗
φb∗− = D∗

∂C∗

∂z∗

∣∣∣∣
b∗+
− (1− φb∗−)

∂C∗

∂z∗

∣∣∣∣
b∗−

, (3.4b)
[
∂T ∗

∂x∗
+
db∗

dx∗
∂T ∗

∂z∗

]∣∣∣∣
b∗+

= Γ∗
[
∂C∗

∂x∗
+
db∗

dx∗
∂C∗

∂z∗

]∣∣∣∣
b∗+

, (3.4c)

T ∗ = T ∗L (C∗0)− Γ∗ (C∗ − C∗0) , u∗ = U∗0 , w
∗ = 0, (3.4d)

where (3.4a), (3.4b) and (3.4c) represents heat conservation, solute conservation and

marginal equilibrium condition, respectively. The marginal equilibrium condition was

introduced by [37], stating that liquid ahead of the mush–liquid interface is not con-

stitutionally supercooled.

Governing equations in the mushy region a∗ (x∗) < z∗ < b∗ (x∗) are

c̄∗(φ)U∗0
∂T ∗

∂x∗
=∇∗·

[
k̄∗(φ)∇∗T ∗

]
+ U∗0L

∗
v

∂φ

∂x∗
, (3.5a)

U∗0
∂

∂x∗
[φC∗] =∇∗· (D∗ (1− φ)∇∗C∗) , (3.5b)

T ∗ = T ∗L (C∗0)− Γ∗ (C∗ − C∗0) , (3.5c)

where (3.5a), (3.5b) are advection–diffusion equations for temperature and concen-

tration respectively and (3.5c) represents liquidus constraint. The solid fraction φ

throughout mushy layer is unknown. The state of thermodynamic equilibrium is main-

tained by liquidus constraint (3.5c). Note that governing equations for velocity profile

are not presented, because solution of form u∗ = v∗ is expected.
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At the mush–solid interface positioned at z∗ = a∗ (x∗) are satisfied

U∗0
da∗

dx∗
(1− φa∗+) C∗|a∗+ = D∗(1− φa∗−)

∂C∗

∂z∗

∣∣∣∣
a∗−

, (3.6a)

U∗0L
∗
v

da∗

dx∗
(1− φa∗+) = k∗s

∂T ∗

∂z∗

∣∣∣∣
a∗−
− k̄∗(φ)

∂T ∗

∂z∗

∣∣∣∣
a∗+

, (3.6b)

T ∗ = T ∗L (C∗0)− Γ∗ (C∗|a∗+ − C∗0) . (3.6c)

These equations as at the liquid–mush interface, represent local conservation laws and

liquidus constraint.

In solid phase 0 < z∗ < a∗ (x∗)

c∗sU
∗
0

∂T ∗

∂x∗
= k∗s∇∗2T ∗, (3.7)

the temperature field is governed by diffusion only, while substrate temperature is fixed

at

T ∗ = T ∗L(C∗0). (3.8)

3.2 Non-dimensionalisation

In this chapter we consider scaling in which lengths will be scaled by a factor κ∗/U∗0 ,

and velocities by U∗0 . The dimensionless temperature and concentration are defined as

T =
T ∗ − T ∗L(C∗0)

∆T ∗
and C =

C∗0 − C∗
∆C∗

(3.9)

respectively, where ∆T ∗ = T ∗∞ − T ∗L(C∗0) and ∆C∗ = C∗0 − C∗∞. We define non-

dimensional positions of interfaces as

a (x) =
a∗ (κ∗x/U∗0 )

κ∗/U∗0
and b (x) =

b∗ (κ∗x/U∗0 )

κ∗/U∗0
. (3.10)

The dimensionless numbers characterizing process of solidification are the Lewis num-

ber Le, the Stefan number S, the concentration ratio C and the dimensionless liquidus

slope Γ defined respectively, by

Le =
κ∗

D∗
, S =

L∗v
c∗∆T ∗

, C =
C∗0

∆C∗
, Γ =

Γ∗∆C∗

∆T ∗
. (3.11)

Note that range of C is (1,∞) and range of Γ is (0, 1). It is good to keep in mind, that

limit case Γ = 1 corresponds to situation when far field values (C∗∞ and T ∗∞) satisfy

the liquidus constraint.
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The dimensionless numbers in liquid are the Prandtl Pr number and the velocity

ratio U

Pr =
µ∗

κ∗
and U =

U∗∞
U∗0

. (3.12)

We consider the limit

ξ =
z

2
√
x

= O(1) as x→∞. (3.13)

The effects, of this limit can be accounted for by applying the transformation (x, z)→
(
lx̃, l1/2z̃

)
considering the leading order balance, and then neglecting the pressure gra-

dient in the casting direction. Note that by (3.3a), the pressure is hydrostatic. After

resolving the limit, we return to the original coordinates (x, z). The resulting system

of boundary-layer equations is as follows. In the far boundary:

T = 1, C = 1, u = U as z →∞. (3.14)

In the liquid phase (z > b):

u
∂u

∂x
+ w

∂u

∂z
= Pr

∂2u

∂z2
, (3.15a)

u
∂T

∂x
+ w

∂T

∂z
=
∂2T

∂z2
, (3.15b)

u
∂C

∂x
+ w

∂C

∂z
=

1

Le

∂2C

∂z2
, (3.15c)

∂u

∂x
+
∂w

∂z
= 0. (3.15d)

At mush–liquid interface (z = b):

S
db

dx
φb− =

[
∂T

∂z

]b−

b+
, (3.16a)

db

dx
(C − C)φb− =

1

Le

[
(1− φ)

∂C

∂z

]b+

b−
, (3.16b)

[
∂T

∂x
+
db

dx

∂T

∂z

]∣∣∣∣
b+

= Γ

[
∂C

∂x
+
db

dx
s
∂C

∂z

]∣∣∣∣
b+
, (3.16c)

T = ΓC, u = 1, w = 0. (3.16d)

In the mush (a < z < b):

∂T

∂x
=
∂2T

∂z2
+ S

∂φ

∂x
, (3.17a)

∂

∂x
[(1− φ) (C − C)] =

1

Le

∂

∂z

[
(1− φ)

∂C

∂z

]
, (3.17b)

T = ΓC. (3.17c)
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At mush–solid Interface (z = a):

S
da

dx
(1− φa+) =

[
∂T

∂z

]a−

a+
, (3.18a)

da

dx
(C − C) (1− φa+) =

1

Le
(1− φ)

∂C

∂z

∣∣∣∣
a+
, (3.18b)

T |a+ = Γ C|a+ . (3.18c)

In the solid phase (0 < z < a):

∂T

∂x
=
∂2T

∂z2
. (3.19)

At the bottom,

T = 0 at z = 0. (3.20)

3.3 Self-similar reduction

The following assumptions allows us to make a self-similar transformation, as in [29]:

• All material properties are the same for liquid and solid phases: c∗s = c∗l , k∗s = k∗l ,

κ∗ ≡ k∗s/c
∗
s = k∗l /c

∗
l and c∗ = c∗s = c∗l .

• No pressure gradient in the casting direction (∂p∗/∂x∗ = 0). This is valid for

film flows with the free stream velocity U∗∞ � (g∗l∗)1/2, where g∗ is the gravity

acceleration and l∗ is the height of free surface.

• The ratio between the velocities of substrate and free stream U = U∗∞/U
∗
0 satisfies

Pr � U � Pr−1. This assumption is easily satisfied by the materials such as

metals, where Pr typically has values from 0.1 to 0.01.

Under these conditions equation (3.15a) in the liquid defines a viscous boundary

layer problem for fluid velocity in the liquid phase as in [29] and [26]. Noting, that the

velocity field in the liquid is decoupled from other fields, we can express u in term of

asymptotic expansion for small Pr. The asymptotic form can be found by the method

of matched asymptotic expansions. Velocity field can be described using the stream

function ψ defined by

u =
∂ψ

∂z
, w = −∂ψ

∂x
. (3.21)
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We seek a self-similar solution of the form:

ψ(x, z) = 2x1/2f(ξ), where ξ =
z

2
√
x

= O(1) as Pr → 0, (3.22)

with the positions of dimensionless interfaces given as

a(x) = 2λax
1/2 and b(x) = 2λbx

1/2, (3.23)

where λa and λb are constants yet to be determined and f satisfies the boundary value

problem described in [29] and [26]:

Prf ′′′ + 2ff ′′ = 0 (3.24a)

f = λb at ξ = λb (3.24b)

f ′ → U as ξ →∞, (3.24c)

where f ′ =df/dξ. Uniformly asymptotic solution of the boundary layer problem (3.24)

is:

f ∼ λb (1− U) + Uξ + Pr
1− U
2λb

[
1− exp

(
−2λb

ξ − λb
Pr

)]
. (3.25)

Asymptotic formula (3.25) holds, while the following condition is satisfied

Pr

λb
� λb. (3.26)

Components of the velocity field in the liquid are

Figure 5: Sketch of representative streamlines for qualitatively different values of U . In the

mushy region, the velocity field is equal to the velocity of the solid dendrites embedded within

the substrate.
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u ∼ 1 + (1− U)

[
exp

(
−2λb

ξ − λb
Pr

)
− 1

]
, (3.27a)

w ∼ −1− U
x1/2

[
λb +

Pr

2λb
−
(
ξ +

Pr

2λb

)
exp

(
−2λb

ξ − λb
Pr

)]
. (3.27b)

as Pr → 0. In figure 5 are depicted situations with w > 0 (w < 0) when U > 1 (U < 1).

The results when the mushy layer is absent are described in [26]. Note that for U = 1,

there is no flow relative to the solid phase, and therefore when space variable x is

replaced by the time variable, the problem is formally equivalent to the solidification

of a binary alloy with planar solid–mush and mush–liquid interfaces analysed in [37].

A boundary layer problem for temperature distribution in the liquid phase can be

obtained as in [26] after applying self-similar transform (3.22) for (3.15b)

T ′′ = −2fT ′, (3.28a)

T = T (b) ≡ Tb at ξ = λb, (3.28b)

T → 1 as ξ →∞. (3.28c)

The solution of (3.28) takes the form:

T (ξ) ∼ 1 + (Tb − 1)
erfc

[
U1/2 (ξ − λb) + U−1/2Λ (λb)

]

erfc [U−1/2Λ (λb)]
, for ξ > λb, (3.29)

where

erfc = 1− erf (ξ) , erf (ξ) =
2√
π

∫ ξ

0

e−s
2

ds (3.30)

and

Λ (λb) = λb + Pr
1− U
2λb

. (3.31)

Note that Λ (λb) ∼ λb + O (Pr) as Pr → 0. Temperature distribution in solid phase

follows differential equation

T ′′ = −2ξT ′. (3.32)

Twice integrating we obtain

T = Ta
erf (ξ)

erf (λa)
, (3.33)

where Ta is constant, which will be determined by condition on temperature gradient

at solid–mush interface. Using relation (3.33) temperature gradient on the solid–mush

interface can be evaluated as

T ′a− =
2λaTa
G (λa)

, (3.34)
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where G (λ) =
√
πλeλ

2erf (λ). Concentration in the liquid phase after applying self-

similar transform follows a differential equation

C ′′ = −2LefC ′, (3.35a)

C = Cb at ξ = λb, (3.35b)

C → 1 as ξ →∞. (3.35c)

Solution of (3.35) is

C (ξ) ∼ 1 + (Cb − 1)
erfc

[
(ULe)1/2 (ξ − λb) + (U/Le)−1/2 Λ (λb)

]

erfc
[
(U/Le)−1/2 Λ (λb)

] , for ξ > λb. (3.36)

In the mush region after self-similar transformation equations are cast into the form

− φ′

1− φ =
2LeξC ′ + C ′′

2Leξ (C − C)− C ′ , (3.37)

C ′′ + 2ξC ′ = 2
S

Γ
ξφ′. (3.38)

Equation (3.37) can be integrated as in [16]:

φ = 1− (1− φb−) exp

(
−
∫ λb

ξ

2LesC ′ + C ′′

2Les (C − C)− C ′
)
ds. (3.39)

Conservation of heat and solute at the mush–solid interface is expressed

[2Sλa (1− φa+) + ΓC ′a+ ]G (λa) = 2ΓλaCa, (3.40a)

[2λa (C − Ca+)] (1− φa+) = 0. (3.40b)

The conservation of heat and solute at the liquid–mush interface is expressed as

2Sλbφb− = Γ (C ′b− − C ′b+) , (3.41a)

2Leλb (C − Cb)φb− = C ′b+ − (1− φb+)C ′b− . (3.41b)

Condition (3.41a) was derived using self-similar version of the marginal equilibrium

condition

T ′b+ = ΓC ′b+ . (3.42)

Integrating (3.37), and using (3.40b) gives
∫ ξ

λa

(C − C) (1− φ) ds =
1

2

[
2λb (C − C)− 1

Le
C ′
]

(1− φ) ,λa < ξ < λb. (3.43)
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Evaluation of integral in the mushy layer gives
∫ λb

λa

(C − C) (1− φ) ds =
1

2

[
2λb (C − Cb)−

1

Le
C ′b−

]
(1− φb−) , (3.44)

where the value of the integral represent dimensionless amount of solute contained in

mushy layer.

For general value of S can be shown that concentration gradient is continuous across

interface C ′b+ = C ′b− and that φb− = 0. To prove that, we manipulate (3.41b) to

φb− = Le (C ′b+ − C ′b−) / [2λbLe (C − Cb) + C ′b− ] , (3.45)

denominator is positive due to (3.44), and nominator is negative because of (3.41a),

under these conditions φb− = 0 is only viable option. We also use (3.41b) and (3.37)

integrated from λa to λb to show that 2Leλa (C − Cb+)− C ′b+ = 0.

3.4 Asymptotic results with latent heat rejection neglected

When Stefan number is set zero, the solution for the temperature, and the concentration

in the mushy region is analogous to the solution of the temperature in the solid phase

T = Ta+
erf (ξ)

erf (λa)
, (3.46a)

C = Ca+
erf (ξ)

erf (λa)
. (3.46b)

Equations (3.41a, 3.41b) represent system of linear equations, when solved we obtain

Ca+ =
LeCG (λa)

1 + LeG (λa)
, (3.47a)

C ′a+ =
2LeCλa

1 + LeG (λa)
. (3.47b)

Evaluating (3.46b) at ξ = λb, and using (3.47a) we gain algebraic equation exhibiting

only solidification rates constants λa and λb as unknowns

LeG (λa)

[
Cb − C

erf (λb)

erf (λa)

]
+ Cb = 0. (3.48)

Using the condition of marginal equilibrium (3.42) and the continuity of concentra-

tion gradient, we establish continuity of temperature gradient across the liquid–mush

interface T ′b+ = T ′b− . Equation for growth constant λb can be obtained by substitut-

ing T ′ and C ′ evaluated at ξ = λb from (3.29) and (3.36) respectively into continuity
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Figure 6: Profiles of temperature (blue), concentration (red), solid fraction (yellow) and x

component of the velocity (green) in both liquid and mushy region. Black line that separates

liquid region at the top and mushy region at the bottom is position of λb liquid–mush interface.

For computation in liquid region equations: (3.29), (3.36), (3.27a) were used, position of

the liquid–mush interface was computed from (3.48) and (3.49) and for temperature and

concentration profiles in the mushy region (3.46), (3.46b) were used. Solid fraction profile

was obtained by numerical integration of (3.54). Parameters were set to C = 2, Le = 100,

Γ = 0.5, Pr = 0.01 and U = 1/10, while values on vertical axis satisfy ξ = O(1).

constraints:

λb
Le
F

[
Λ (λb)√
U/Le

]
− ΓλbF

[
Λ (λb)√
U

]
+ (1− Γ) Λ (λb)G (λb) = 0, (3.49)

where

F (λ) =
√
πλeλ

2

erfc (λ) . (3.50)

Values of temperature and concentration on the mush–liquid interface

Tb = 1−
λbF

[
Λ (λb) /

√
U
]

λbF
[
Λ (λb) /

√
U
]

+ Λ (λb)G (λb)
, (3.51a)

Cb = 1−
λbF

[
Λ (λb) /

√
U/Le

]

λbF
[
Λ (λb) /

√
U/Le

]
+ LeΛ (λb)G (λb)

. (3.51b)
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Figure 7: The concentration Cb at the mush–liquid interface, and the position of the mush–

liquid interface λb as functions of U , Γ, Pr and Le. The plotted values of Cb (red) were

computed using (3.51b) and λb (green) were calculated from (3.49). Note that for Le ' 100,

Cb and λb are almost independent of Le. Parameters used were U = 0.5, Le = 100, Γ = 0.5

and Pr = 10−3.

On figure 7 is depicted dependence of both λb and Cb on the important non-dimensional

parameters evaluated using (3.51b) and (3.49) respectively. Notable is the indepen-

dence of concentration and mushy layer thickness on Pr, the near linear dependence of

mushy layer thickness versus Γ and transition to the small diffusivity limit as Le→∞.

We present numerical solutions of (3.49) on figure 8. Solutions corresponding to

the root Λ (λb) = 0 are not presented, because they does not satisfy condition (3.26)

i.e. are not asymptotic. Note, that number if solutions of (3.49) depends on values of

U . The three intervals U ∈ 〈0; 1〉, U ∈ 〈1;Umax〉 and U ∈ 〈Umax;∞〉 corresponds to one

solution, two solutions and no solution scenario respectively. This can be compared to

the results obtained in [28], where λb existed for all values of U . On figure (9) we observe

two branches of λb and corresponding values of λa are computed for each branch using

equation [3.48]. Dashed pair of λb and λa is for all values of U physically admissible
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Figure 8: The position of the mush–liquid interface λb, as function of the velocity ratio U
computed from (3.49). The red curve correspods to Pr = 10−3 and the blue curve corresponds

to Pr = 10−2. The black portions correspond to the case when criterion Pr/λ2
b > 0.5. The

values of other parameters used are Le = 100 and Γ = 0.5.

scenario i.e. λa < λb. Pair drawn with solid line is physically admissible only for values

of U > Umin > 1, where Umin depends on the condition (3.26) and in the plotted case

Umin ∼ 8.

On figure 10 dependence of Umax and associated values of λb on Prandtl number

is observed. Considering the first order approximation λbmax ∼ λ0Pr
1/2 and Umax ∼

U0Pr
−1, where U0 = O(1) and λ0 = O(1) into (3.49) we gain

F

(
−U1/2

0

2Leλ0

)
− LeΓF

(
−U1/2

0

2λ0

)
= Le (1− Γ)U0λ0. (3.52)

Dependence of leading order terms λ0 and U0 on parameters Γ and Le can be assessed by

considering equation (3.49) as implicit function of U (λb) and calculating dU
dλb . Solution

for λ0 and U0 then can be obtained numerically from

F ′
(
−U1/2

0

2Leλ0

)
= Le1/2ΓF ′

(
−U1/2

0

2λ0

)
. (3.53)
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Figure 9: Red colour depicts two branches of λb, blue colour is used for λa computed

numerically from (3.49) and (3.48) respectively. Corresponding branches shares line type.

The values of used parameters are Pr = 10−2, Le = 100, Γ = 0.5 and C = 2. Note that for

y-axis logarithmic scale is used.

The solid fraction integral (3.39) takes the form

φ (ξ) = 1− exp
(
−
∫ λb

ξ

2s (Le− 1)

Leπ1/2s es2 [(LeG (λa) + 1) / (LeG (λa)) erf (λa)− erf (s)]− 1
ds

)
.

(3.54)

3.4.1 Small solutal diffusivity limit

The results in this section were obtained using

erf(x) ∼ 2π−1/2e−x
2 [
x+O(x3)

]
for x� 1, (3.55)

erf(x) ∼ π−1/2e−x
2 [

1/x+O(1/x3)
]
for x� 1. (3.56)

In the limit Le → ∞ a concentration boundary layer of thickness O(Le−1/2) forms

ahead of the mush–liquid interface. Since F (s) ∼ 1 and G(s) ∼ ses2 as s → ∞, the

only admissible solution of (3.49) is of the order of unity. Furthermore from (3.51b) we

can deduce Cb → 1 as Le → ∞. From (3.48) we have λa → 0 as Le → ∞, otherwise

λa > λb, which is not admissible. The solution of (3.48) is

λa =
1/Le

π1/2Cerf (λb)
+O

(
Le−2

)
as Le→∞. (3.57)
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Figure 10: The top plots show Umax and λbmax as function of Pr. The bottom plots

shows the same dependence shown in logarithmic scale. The slopes at the bottom show

λbmax ∼ λ0Pr
1/2 and Umax ∼ U0Pr

−1, where U0 = O(1) and λ0 = O(1). Other parameters

were set to Le = 100 and Γ = 0.5.

Observe that λb, in (3.49), does not depend on the concentration ratio C, so that the

thickness of the solid decreases with C. Using (3.57) we can derive concentration and

its gradient at the bottom of mushy layer

Ca ∼
2C

πC2erf2 (λb)Le+ 2
(3.58)

and

C ′a ∼
2π1/2C2erf (λb)

πC2erf2 (λb)Le+ 2
. (3.59)

As the limit of Pr → 0 is regular we consider behaviour of (3.49), when Pr = 0 so that

F

[
λb

(U/Le)1/2

]
− ΓF

[
λb
U1/2

]
+ Le (1− Γ)G (λb) = 0. (3.60)

Considering a limit U → 0 for (3.60) a solution can be approximated using:

G (λb) =
Γ

1− Γ
. (3.61)
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Figure 11: Leading order solution (3.60) computed numerically using (3.61). Note the

singularity in λb as Γ→ 1−.

We note that the dimensionless parameter Γ, which is proportional to the ratio of the

compositional and thermal differences across the system satisfy Γ = [T ∗L (C∗∞)− T ∗L (C∗0)] /∆T ∗

and that the right-hand side of (3.61) can be expressed as a ratio of the driving temper-

ature differences, i.e. [T ∗L (C∗∞)− T ∗L (C∗0)] / [T ∗∞ − T ∗L (C∗∞)]. The range of G is (0,∞),

and since G is increasing there exists a unique solution for every Γ ∈ (0, 1). Depen-

dence of λb on Γ is depicted on figure 11, presented values are numerically computed

from (3.61).

3.4.2 Results for for U = 0

Even though limit U → 0 is regular it is interesting to further investigate the case.

Situation U = 0 corresponds to the case, when far field velocity U∗∞ is being set to

zero. The growth constants for interfaces λa and λb are independent of U∗0 and hence

we can observe that dimensional position of interfaces

a∗ (x∗) = 2λa (κ∗x∗/U∗0 )1/2 , (3.62a)

b∗ (x∗) = 2λb (κ∗x∗/U∗0 )1/2 (3.62b)
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Figure 12: Plots of temperature - (a) and of concentration (b) in the liquid phase as function

of ξ on the vertical axis. For U = 1/10 , marked with blue, the computation was carried out

using equations (3.29) and (3.36). For U = 0 , marked red, equations (3.63a) and (3.63b)

were used. Other values of parameters are Pr = 10−2, Le = 100 and Γ = 0.5.

is proportional to the (U∗0 )−1/2. Asymptotic expansion (3.25) holds for U = 0 and

therefore the temperature and the concentration in liquid phase can be expressed as

T ∼ 1− Le 1− Γ

Le− 1
exp

[
−2λ2

b + Pr

λb
(ξ − λb)

]
, (3.63a)

C ∼ 1− 1− Γ

(Le− 1) Γ
exp

[
−Le2λ2

b + Pr

λb
(ξ − λb)

]
. (3.63b)

In figure 12 we show typical profiles of the temperature and concentration fields, given

by (3.63a,3.63b); shown are also the profiles corresponding to positive values of U .
Equation (3.48) is unchanged, while equation for the growth constant λb satisfies alge-

braic equation

G (λb)

(
1 +

Pr

2λ2
b

)
=

Γ− 1/Le

1− Γ
. (3.64)

Positive solution of (3.64) exists only if ΓLe > 1. By computing derivation of implicitly

defined function (3.64) it can be seen, that position of the mush–liquid interface λb

increases with Γ and Le and is decreasing function of Pr. There are no local extremes

present in the range of asymptotically admissible values of parameters.
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Figure 13: Sequence of equally spaced contour levels of dimensional position (in m) of the

mush–liquid interface b∗(x∗). For x∗ = 1m, κ∗ = 5 × 10−6m2s−1, as in [26]. The range of U
in the plot is 0 ≤ U ≤ 10, while horizontal axis corresponds to U = 0. Note that the non-

monotonicity of b∗ in the section corresponding to U ∼ 10. Other parameters are Pr = 10−2,

Le = 100, Γ = 0.5.

Considering limits Pr → 0 and Le→∞ equation (3.64) simplifies to (3.61), which

was obtained before.

We can use (3.63b) and (3.44) to calculate the total amount of solute within mushy

region as
∫ λb

λa

(C − C) (1− φ) ds = λb (C − 1)− Pr (1− Γ)

2λbΓ (Le− 1)
. (3.65)

From (3.65) we can observe that the total amount of solute in the mushy layer is

dominantly determined by λb (C − 1), while other term being of order O(Pr/Le) as

Le→∞ and Pr → 0. This holds for Γ not too close to 1.

In figure 13 we plot the contours of the dimensional position of the mush–liquid

interface, given in (3.62b), for general values of U , in terms of U0 and U∞. An

interesting feature is the non-monotonicity of b∗ as a function of U0 in the region close

to the line U = 10.

In figure 14 we plot the growth constants λa and λb as functions of Γ, calculated

from equations (3.48) and (3.49) together with those corresponding to the mushy region
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Figure 14: Growth constants λa (dashed) and λb (solid) are represented as function of Γ.

The red pair (case U = 0) was calculated from equations (3.48) and (3.49) and for comparison

the blue pair (case U = 1) was calculated from (3.48) and (3.64) and correspond to problem

studied by [37]. Other values of parameters are Pr = 10−3, Le = 100 and Γ = 0.5.

without horizontal pulling, calculated from (3.48) and (3.64), which correspond to the

problem studied by [37]. Note that there exist a value Γ = Γmin such that λa = λb.

Physically realistic solutions exists only for Γ > Γmin. As Γ approaches 1 behaviour is

similar to one observed in figure 11.

In figure 15 we show Γmin as a function of U , the values of Γmin are found to attain

their maximum values at U = 1. Thus, the horizontal pulling and the resulting flow

in the liquid enhance the formation of a mushy region. in another words: when the

system is pulled horizontally, the range of Γ for which the mush exists is larger than

that for the system without pulling.
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Figure 15: Minimal value of Γ for which mushy region exists, Γmin, as function of U . The plot
shows two qualitatively different asymptotic regimes: blue curve corresponds to Pr � 1/Le

with values Pr = 10−3 and Le = 100; red curve corresponds to Pr � 1/Le with values

Pr = 10−2 and Le = 1000. Note that Γmin attains finite values at U = 0. In all computations

C = 2 was used.
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4 Directional solidification of ternary alloy

4.1 Ternary phase diagram

The path of an alloy element during solidification with no convection is sketched in

figure 16. The concentrations of three components 1, 2 and 3 are denoted by C∗1 , C∗2
and C∗3 , respectively. The concentrations satisfy C∗1 +C∗2 +C∗3 = 1. T ∗M represents the

melting temperature of the pure component 3; E13 is a binary eutectic point for the

binary system 1–3, T 13∗
E and C13∗

1E are the binary eutectic temperature and concentration

for the system 1–3. The cotectic curves intersect at the ternary eutectic point E, with

the eutectic temperature T ∗E and the concentrations C∗1E, C∗2E and C∗3E. The phase

Figure 16: Ternary phase diagram. The base of diagram is the Gibbs triangle, corners

1, 2 and 3 correspond to the respective pure components. Shaded planes represent liquidus

surfaces. In the region, above the liquidus surfaces is the liquid phase. At the intersection of

two liquidus planes is a cotectic curve. The cotectic curves intersect at the ternary eutectic

point E. A sketch of a solidification path L → P → S → E is shown.

diagram can be used for tracking the concentration of cooling melt in a thermodynamic

equilibrium. The solidification path depicted in figure 16 starts at point L which lies

above the liquidus surface; at this point there is only melt in the liquid phase present.

The path continues to the point P , which lies on the liquidus surface and corresponds
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to a liquid layer–primary mush interface. In equilibrium the primary solidification of

the mushy layer corresponds to the solidification path on the liquidus surface (see for

example [7], [19] and [20]).

The phase diagram for the three-component alloys is usually represented in forms

of the Gibbs triangle, in which each corner corresponds to a pure component (see e.

g. [36]). The solidification process is typically associated with a single corner of the

Gibbs triangle. The component in this corner is denoted as 3 while the solutes 1 and

2. Each side of the triangle represents a binary diagram for the respective component

pair, for example side 1–2 represents the binary diagram for the binary system with

components 1 and 2. Ternary diagrams for metal alloy can be very complex, exhibiting

many intermetallic phases. As an example we show in figure 17 the ternary diagram of

Pb–Sb–Sn alloy from [24], [25], which includes intermetallic phases, a peritectic point

and a eutectic point.

Figure 17: The linearized liquidus surface of the lead rich-corner of Pb–Sb–Sn diagram

(taken from [24]). The ternary Pb–Sb–Sn diagram is divided into two sections by the pseu-

dobinary Pb–SbSn system, where SbSn is an intermetallic compound. The Pb–SbSn system

has a eutectic point ePb–SbSn at 245◦C. The partial system Pb–Sb–SbSn has a ternary eu-

tectic point (E) at 240◦C. The partial system Pb–Sn–SbSn, has an invariant point, a ternary

peritectic (P) at 190◦C.

Ternary phase diagrams for aquaeous mixtures are generally much simpler (see e.

g. [2]). First, there are no solid solutions (the solvus lines are vertical). Second, all

liquidus surfaces are planar.

The thermodynamic equilibrium constraint within the mush associated with the
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primary solidification (the primary mush) can be expressed as

T ∗L (C∗1 , C
∗
2) = T ∗M +m∗1C

∗
1 +m∗2C

∗
2 , (4.1)

where m∗1 and m∗2 are the liquidus slopes relating the change in temperature to the

changes in solute compositions. Concentration of the component 3 can be computed

from C∗3 = 1− C∗1 − C∗2 .
A linearized ternary diagram with the liquidus surface and the solidus surface is

sketched in figure 18.

Figure 18: A schematic of ternary phase diagram for primary mush from [19]. The liq-

uidus surface and the solidus surface associated with the corner 3 are depicted. A typical

solidification path and its projection onto the Gibbs triange are shown.

4.2 Primary solidification

The theoretical formulations of mathematical modelling of ternary alloy systems have

been recently reviewed in [8].

In the primary mushy layer the solidification of a single alloy component 3 occurs.

Equations describing the processes in the primary mush are valid in region H∗S < z∗ <

H∗P as sketched in figure 19.
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Figure 19: Sketch of the geometry for ternary solidification occurring away from cotectic

lines. At the top is a semi-infinite liquid layer, underneath separated by a first planar interface

is the primary mushy layer, in this layer the thermodynamical equilibrium is maintained and

dendrites formed of component 3 evolve. The second interface separates the primary and

the secondary mush. In the secondary mush temperature and composition are constrained to

cotectic curve and crystals of cotectic concentration of components 3 and 1 are formed. The

bottom layer is a eutectic solid which in which no phase transition occurs.

The mushy layer is bounded by two interfaces, moving in time at a constant speed

V ∗ and having a constant distance H∗. We denote T ∗ as temperature, C∗1 , C∗2 as

concentrations of two solutes, φ as a solid fraction, p∗ as pressure and u∗ as Darcy

velocity. Governing equations in this coordinate system are

c̄∗ (φ)

(
∂T ∗

∂t∗
− V ∗∂T

∗

∂z∗
+ u∗·∇∗T ∗

)
=∇∗·

(
k̄∗ (φ)∇∗T ∗

)
+ L∗v

(
∂φ

∂t∗
− V ∗ ∂φ

∂z∗

)
,

(4.2a)

(1− φ)

(
∂C∗j
∂t∗
− V ∂C

∗
j

∂z∗

)
+ u∗·∇∗C∗j =∇∗ ·

(
D∗j (1− φ)∇∗C∗j

)
+ (1− kj)C∗j

(
∂φ

∂t∗
− V ∗ ∂φ

∂z∗

)
,

for j = 1, 2, (4.2b)

T ∗ = T ∗M +m∗1C
∗
1 +m∗2C

∗
2 , (4.2c)

u∗ = −Π∗ (φ)

µ∗

(
∇∗p∗ + ρ∗g∗k̂

)
, (4.2d)

∇∗·u∗ = 0. (4.2e)

where c̄∗(φ) = c∗sφ+ (1− φ) c∗l is the effective specific heat of the mushy layer with

c∗s and c∗l being the constant specific heat in the solid and liquid phases; k̄∗ (φ) =

k∗sφ + (1− φ) k∗l is the effective thermal conductivity with k∗l and k∗s being thermal

conductivity of liquid and solid phase respectively; L∗v is the latent heat; D∗j is constant
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solutal diffusivity in the liquid for species j (diffusion of solute in the solid is neglected);

kj are segregation coefficients and m∗j are liquidus slopes; Π∗ (φ) is the permeability of

mushy layer; T ∗M represents melting temperature of pure 3-rd component; µ∗ is dynamic

viscosity; g∗ is gravity acceleration; ρ∗ is fluid density.

During this process thermodynamic equilibrium in alloy is maintained, by the liq-

uidus constraint (4.2c). A motion of interdendritic fluid is modeled via Darcy’s porous

media equation (4.2d). Permeability of media is function only of φ – fraction of fluid

in particular volume, however this fraction varies across mushy layer. In work [7]

for simple model with analytical solution constant permeability Π∗ (φ) = 1 was con-

sidered; more generally was permeability considered in [19] as a Taylor expansion of

Π∗ (φ) = Π∗0 (1− φ)−p. Equations governing concentration (4.2b) are reflecting effects

of solute segregation via terms (1− kj)C∗j
(
∂φ
∂t∗ − V ∗

∂φ
∂z∗
)
.

The fluid density is assumed to satisfy

ρ∗ = ρ∗0 [1− α∗ (T ∗ − T ∗M)− α∗1C∗1 − α∗2C∗2 ] , (4.3)

where α∗ and α∗j (j = 1, 2) are thermal and solutal expansion coefficients and ρ∗0 is the

density of 3-rd component at its melting temperature T ∗M .
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5 Steady non-convecting states in ternary alloy solid-

ification

Reduction to a single primary mush requires the specification of alternative boundary

conditions. We will analyse 4 sets of boundary conditions (BCs):

C–C : C∗j = C∗jtop, φ = φ0 at z∗ = H∗; Cj = C∗jbot at z
∗ = 0,

F–C : C∗j = C∗jtop, φ = φ0 at z∗ = H∗;
∂C∗j
∂z∗

= G∗jbot at z
∗ = 0,

C–F :
∂C∗j
∂z∗

= G∗jtop, φ = φ0 at z∗ = H∗; C∗j = C∗jbot at z
∗ = 0,

F–F :
∂C∗j
∂z∗

= G∗jtop, φ = φ0 at z∗ = H∗; C∗j = C∗jbot,
∂C∗j
∂z∗

= G∗jbot at z
∗ = 0,

for j = 1, 2.

5.1 Non-dimensionalisation

For all boundary condition types (C–C, F–C, C–F, F–F) we obtain the same system of

dimensionless governing equations. The mentiond cases differ by definitions of dimen-

sionless parameters and the boundary conditions. We will employ non-dimensionalisation

as in [7] in which lengths will be scaled by factor H∗ – height of mushy layer, time

scaled by H∗2/κ∗l , where κ∗l = k∗l /c
∗
l is thermal diffusivity and velocity by κ∗l /H∗. We

define dimensionless pressure as:

p =
Π∗0
κ∗l µ

∗
(
p∗ + ρ∗topg

∗z∗
)
. (5.1)

Then governing equations have the form:

c̄ (φ)

(
∂T

∂t
− V ∂T

∂z
+ u·∇T

)
=∇ ·

(
k̄ (φ)∇T

)
+ S

(
∂φ

∂t
− V ∂φ

∂z

)
, (5.2a)

(1− φ)

(
∂Cj
∂t
− V ∂Cj

∂z

)
+ u·∇Cj = Lej∇ · [(1− φ)∇Cj] + (1− kj)Cj

(
∂φ

∂t
− V ∂φ

∂z

)
,

for j = 1, 2, (5.2b)

T = m1C1 +m2C2, (5.2c)

u = −Π (φ)
(
∇p+ ∆ρk̂

)
, (5.2d)

∇ · u = 0, (5.2e)
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where c̄ (φ) = (c∗s/c
∗
l )φ+ 1− φ, k̄ (φ) = (k∗s/k

∗
l )φ+ 1− φ, Π (φ) = Π∗ (φ) /Π∗0 and ∆ρ

connects density of fluid with temperature and concentration fields

∆ρ = −RaT −Ra1C1 −Ra2C2. (5.3)

Due to linear liquidus constraint we can quantify the buoyant effects through the two

effective Rayleigh numbers RaT = Ra + 1
m2
Ra2 and RaC = Ra1 − m1

m2
Ra2. Note a

coupling RaT +RaC = Ra+Ra1 +Ra2.

In the following section we will discuss the effect of type of boundary conditions on

definition of dimensionless parameters. Four different cases of concentration boundary

conditions are presented. These combine fixed concentrations and fixed solutal fluxes

denoted by C and F respectively:

5.1.1 Boundary conditions: Type C–C

Boundary conditions as in [7] and [22]:

T ∗ = T ∗top, C
∗
1 = C∗1top, C

∗
2 = C∗2top, φ = φ0, u∗ · k̂ = 0 at z∗ = H∗,

T ∗ = T ∗bot, C
∗
1 = C∗1bot, C

∗
2 = C∗2bot, u

∗ · k̂ = 0 at z∗ = 0∗.

Choice of such conditions, by liquidus constraint (4.2c) implies two couplings:

T ∗top = T ∗M +m∗1C
∗
1top +m∗2C

∗
2top, T ∗bot = T ∗M +m∗1C

∗
1bot +m∗2C

∗
2bot.

We define non-dimensional temperature and concentrations as follows

T =
T ∗ − T ∗M
T ∗top − T ∗bot

, Cj =
C∗j

C∗jtop − C∗jbot
. (5.4)

We can observe that T ∗M = T ∗top −m∗1C∗1top −m∗2C∗2top and that the liquidus slopes m∗1,

m∗2 are negative. Therefore T ∗M > T ∗top and non-dimesional temperature T < 0.

A set of dimensionless parameters is

V =
V ∗H∗

κ∗l
, S =

L∗v
c∗l
(
T ∗top − T ∗bot

) , Lej =
κ∗l
D∗j

,

Ra =
α∗
(
T ∗top − T ∗bot

)
g∗Π∗0H

∗

κ∗l µ
∗ , Raj =

α∗j
(
C∗jtop − C∗jbot

)
g∗Π∗0H

∗

κ∗l µ
∗ , mj =

m∗j
(
C∗jtop − C∗jbot

)
(
T ∗top − T ∗bot

) .

Previous definitions lead to the dimensionless boundary conditions

T = Tbot + 1, C1 = C1bot + 1, C2 = C2bot + 1, φ = φ0, u · k̂ = 0 at z = 1
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and T = Tbot, C1 = C1bot, C2 = C2bot, u · k̂ = 0 at z = 0

and the coupling Tbot = m1C1bot +m2C2bot, where Cjbot =
C∗jbot

C∗jtop−C∗jbot
, Cjtop =

C∗jtop
C∗jtop−C∗jbot

and Tbot =
T ∗bot−T ∗M
T ∗top−T ∗bot

. Note that Tbot ∈ (−∞;−1).

5.1.2 Boundary conditions: Type F–C

Boundary conditions:

T ∗ = T ∗top, C
∗
1 = C∗1top, C

∗
2 = C∗2top, φ = φ0, u∗ · k̂ = 0 at z∗ = H∗,

∂C∗1
∂z∗

= G∗1bot,
∂C∗2
∂z∗

= G∗2bot, u
∗ · k̂ = 0 at z∗ = 0∗,

with restriction on the gradients m∗1G∗1bot +m∗2G
∗
2bot > 0. This choice of BC’s implies a

coupling:

T ∗top = T ∗M +m∗1C
∗
1top +m∗2C

∗
2top.

We define dimensionless temperature and concentrations as

T =
T ∗ − T ∗M

(m∗1G
∗
1bot +m∗2G

∗
2bot)H

∗ , Cj =
C∗j

G∗jbotH
∗ , (5.5)

where T exhibits only negative values, but Cj exhibits same sign as prescribed value

of G∗jbot. A set of dimensionless parameters:

V =
V ∗H∗

κ∗l
, S =

L∗v
c∗l (m∗1G

∗
1bot +m∗2G

∗
2bot)H

∗ , Lej =
κ∗l
D∗j

, (5.6)

Ra =
α∗ (m∗1G

∗
1bot +m∗2G

∗
2bot) g

∗Π∗0H
∗2

κ∗l µ
∗ , Raj =

α∗jG
∗
jbotg

∗Π∗0H
∗2

κ∗l µ
∗ , mj =

m∗jG
∗
jbot

m∗1G
∗
1bot +m∗2G

∗
2bot

.

(5.7)

Dimensionless boundary conditions are

T = Ttop, C1 = C1top, C2 = C2top, φ = φ0, u · k̂ = 0 at z = 1

and
∂C1

∂z
= 1,

∂C2

∂z
= 1, u · k̂ = 0 at z = 0

and the coupling Ttop = m1C1top+m2C2top, where Cjtop =
C∗jtop

G∗jbotH
∗ and Ttop =

T ∗top−T ∗M
(m∗1G∗1bot+m∗2G∗2bot)H∗

.

Note that Ttop ∈ (−∞; 0).
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5.1.3 Boundary conditions: Type C–F

Boundary conditions:

∂C∗1
∂z∗

= G∗1top,
∂C∗2
∂z∗

= G∗2top, φ = φ0, u∗ · k̂ = 0 at z∗ = H∗ and

T ∗ = T ∗bot, C
∗
1 = C∗1bot, C

∗
2 = C∗2bot, u

∗ · k̂ = 0 at z∗ = 0∗,

with restriction on the gradients m∗1G∗1top + m∗2G
∗
2top > 0. This choice of BC’s implies

a coupling:

T ∗bot = T ∗M +m∗1C
∗
1bot +m∗2C

∗
2bot.

We define dimensionless temperature and concentrations as

T =
T ∗ − T ∗M(

m∗1G
∗
1top +m∗2G

∗
2top

)
H∗

, Cj =
C∗j

G∗jtopH
∗ , (5.8)

where T exhibits only negative values, but Cj exhibits same sign as prescribed value

of G∗jtop. A set of dimensionless parameters:

V =
V ∗H∗

κ∗l
, S =

L∗v
c∗l
(
m∗1G

∗
1top +m∗2G

∗
2top

)
H∗

, Lej =
κ∗l
D∗j

, (5.9)

Ra =
α∗
(
m∗1G

∗
1top +m∗2G

∗
2top

)
g∗Π∗0H

∗2

κ∗l µ
∗ , Raj =

α∗jG
∗
jtopg

∗Π∗0H
∗2

κ∗l µ
∗ , mj =

m∗jG
∗
jtop

m∗1G
∗
1top +m∗2G

∗
2top

.

(5.10)

Dimensionless boundary conditions are

∂C1

∂z
= 1,

∂C2

∂z
= 1, φ = φ0, u · k̂ = 0 at z = 1

and T = Tbot, C1 = C1bot, C2 = C2bot, u · k̂ = 0 at z = 0

and the coupling Tbot = m1C1bot+m2C2bot, where Cjbot =
C∗jbot

G∗jtopH
∗ and Tbot =

T ∗bot−T ∗M
(m∗1G∗1top+m∗2G

∗
2top)H∗

.

Note that Tbot ∈ (−∞; 0).

5.1.4 Boundary conditions: Type F–F

Boundary conditions:

∂C∗1
∂z∗

= G∗1top,
∂C∗2
∂z∗

= G∗2top, φ = φ0, u∗ · k̂ = 0 at z∗ = H∗

and C∗1 = C∗1bot, C
∗
2 = C∗2bot,

∂C∗1
∂z∗

= G∗1bot,
∂C∗2
∂z∗

= G∗2bot, u
∗ · k̂ = 0 at z∗ = 0∗,
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with restrictions on the gradients

m∗1G
∗
1top +m∗2G

∗
2top > 0 and m∗1G

∗
1bot +m∗2G

∗
2bot > 0. (5.11)

Note that overdetermined system will generate extra coupling. We define dimensionless

temperature and concentrations as

T =
T ∗ − T ∗M

(m∗1G
∗
1bot +m∗2G

∗
2bot)H

∗ , Cj =
C∗j

G∗jbotH
∗ , (5.12)

where T exhibits only negative values, but Cj exhibits same sign as prescribed value

of G∗jbot. A set of dimensionless parameters:

V =
V ∗H∗

κ∗l
, S =

L∗v
c∗l (m∗1G

∗
1bot +m∗2G

∗
2bot)H

∗ , Lej =
κ∗l
D∗j

, (5.13)

Ra =
α∗ (m∗1G

∗
1bot +m∗2G

∗
2bot) g

∗Π∗0H
∗2

κ∗l µ
∗ , Raj =

α∗jG
∗
jbotg

∗Π∗0H
∗2

κ∗l µ
∗ , mj =

m∗jG
∗
jbot

m∗1G
∗
1bot +m∗2G

∗
2bot

.

(5.14)

Dimensionless boundary conditions are

∂C1

∂z
= G1,

∂C2

∂z
= G2, φ = φ0, u · k̂ = 0 at z = 1

and C1 = C1bot, C2 = C2bot,
∂C1

∂z
= 1,

∂C2

∂z
= 1, u · k̂ = 0 at z = 0,

where Gj =
G∗jtop
G∗jbot

and Cjbot =
C∗jbot

G∗jbotH
∗ . Moreover, substituting of m∗j into constraints

(5.11) we obtain single constraint 0 < m1G1 +m2G2. Note that Tbot ∈ (−∞; 0).

5.2 Base state

We will denote a steady one-dimensional solution without convection as a base state

solution. A system of equations corresponding to base state of (5.2) has the form:

−c(φ̄)V
dT̄

dz
=

d

dz

[
k
(
φ̄
) dT̄

dz

]
− V Sdφ̄

dz
, (5.15a)

−V
(
1− φ̄

) dC̄j
dz

=
1

Lej

d

dz

[(
1− φ̄

) dC̄j
dz

]
− V (1− kj) C̄j

dφ̄

dz
, for j = 1, 2, (5.15b)

T̄ = m1C̄1 +m2C̄2. (5.15c)
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The types of boundary conditions considered are:

C–C : C̄j (0) = Cjbot, C̄j (1) = Cjbot + 1, φ̄ (1) = φ0;

F–C :
dC̄j
dz

(0) = 1, C̄j (1) = Cjtop, φ̄ (1) = φ0;

C–F : C̄j (0) = Cjbot,
dC̄j
dz

(1) = 1, φ̄ (1) = φ0;

F–F : C̄j (0) = Cjbot
1,

dC̄j
dz

(0) = 1,
dC̄j
dz

(1) = Gj, φ̄ (1) = φ0.

5.2.1 Numerical solutions

We compute solution of the system (5.15) as in [7] and [22] by shooting method. System

(5.15) is transformed to system of first-order linear equations in variables φ̄, C̄1, C̄2,

Q̄1 and Q̄2, where Q̄j =
(
1− φ̄

) dC̄j
dz

, for j = 1, 2:

dφ̄

dz
=
V
[
m1Le1Q̄1 +m2Le2Q̄2 −

(
c
(
φ̄
)
/k
(
φ̄
)) (

m1Q̄1 +m2Q̄2

)]

V
[
m1Le1 (1− k1) C̄1 +m2Le2 (1− k2) C̄2

]
− f , (5.16a)

dQ̄1

dz
= −V Le1Q̄1 + V Le1 (1− k1) C̄1

dφ̄

dz
, (5.16b)

dQ̄2

dz
= −V Le2Q̄2 + V Le2 (1− k2) C̄2

dφ̄

dz
, (5.16c)

dC̄1

dz
=

Q̄1

1− φ̄ , (5.16d)

dC̄2

dz
=

Q̄2

1− φ̄ , (5.16e)

where

f = −m1Q̄1 +m2Q̄2

1− φ̄ +
V S

(
1− φ̄

)

k
(
φ̄
) − 1

k
(
φ̄
) dk

dφ̄

(
m1Q̄1 +m2Q̄2

)
.

For shooting from bottom, z = 0, transformation z = 1 − ζ was used. Depending on

the boundary condition type the shooting method’s setup will be:

C–C: shoot from C̄j (1) = Cjbot + 1, φ̄ (1) = φ0, Q̄j (1) = Qjtop to solve C̄j (0) = Cjbot

for j = 1, 2.

F–C: shoot from C̄j (1) = Cjtop, φ̄ (1) = φ0, Q̄j (1) = Qjtop to solve 1−φ̄ (0)−Q̄j (0) = 0

for j = 1, 2.

For both BC types, values Q1top and Q2top are unknown quantities. Calculations were

done using software Matlab. For integration of the system (5.16) we considered solvers

ode23s, ode45, ode113 and ode23tb. The most robust performance with respect to
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non–dimensional parameters and solver settings was achieved using ode45. Computa-

tion of Q1top and Q2top is done by function fsolve. In figure 20 numerical solution is

depicted, corresponding to the base state analysed in §5.3, with F–C type of boundary

conditions applied.

Figure 20: Plot of a numerical solution of a base state with F–C type of boundary conditions

applied. Parameter values used here are m1 = 0.5, Le1 = Le2 = 25, k1 = k2 = 0.3, ks/kl = 1,

cs/cl = 1, S = 0, V = 0.1 and the concentration boundary conditions are C1top = −3,

C2top = −2 and φ0 = 0.1.

42



5.3 Analytical solutions

In [22] we presented a number of parametric reductions allowing analytical solution

of system (5.15). Here we will consider the case in which both statically–stably and

statically unstably stratified concentration profiles are present, allowing further study of

doubly-diffusing convection in statically–stable region presented in [7]. We will assume

the same speed of solute rejection k1 = k2 ≡ k, the same Lewis number Le1 = Le2 = Le

for both solutes and zero Stefan number S = 0. We will also make assumption of the

same material properties of the liquid and solid phases, namely thermal conductivity

k∗s = k∗l and specific heat c∗s = c∗l , resulting in k̄ (φ) = c̄ (φ) = 1. The most important

features of presented solutions are finite speed of macroscopic solidification (V 6= 0)

and presence of partial solute rejection effects (k 6= 1).

We will show the base state solution as a function of imposed boundary conditions

(BCs).

Under mentioned reductions the base state equations (5.15) take the form:

−V dT̄

dz
=

d2T̄

dz2
, (5.17a)

−V
(
1− φ̄

) dC̄j
dz

=
1

Le

d

dz

[(
1− φ̄

) dC̄j
dz

]
− V (1− k) C̄j

dφ̄

dz
, for j = 1, 2, (5.17b)

T̄ = m1C̄1 +m2C̄2. (5.17c)

Without assuming the type of BCs, we have the relationship between the solid fraction

and the temperature:

− 1

1− φ̄
dφ̄

dz
=

V (1− Le) dT̄ /dz

dT̄ /dz + V Le (1− k) T̄
. (5.18)

The solution of T̄ depends on the choice of BCs type as follows:

T̄ (z) =





δ−e−V z
1−e−V C–C

δ−e−V z
V

F–C

δ−e−V z
V e−V C–F

δ−e−V z
V

F–F,
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where the parameter δ = e−V T̄ (0)−T̄ (1)

T̄ (1)−T̄ (0)
, which depending on the type of BCs is equal to:

δ =





1 + Tbot
(
1− e−V

)
C–C

e−V + V Ttop F–C

1 + e−V V Tbot C–F

1 + TbotV F–F.

In F–F case, controlling both gradients and concentrations at the bottom creates an

overdetermined system. With the additional condition manifesting as a link between

concentration gradients and solidification speed

V = −ln (m1G1 +m2G2) .

Physically admissible range of values for δ is (−∞; 1) in all cases, except the F–C type,

when δ ∈
(
−∞; e−V

)
.

The solid fraction satisfies

d

dz
ln
(
1− φ̄

)
= − 1

1− φ̄
dφ̄

dz
=

V e−V z

−Le(1− k)δ/ (Le− 1) + ηe−V z
, (5.19)

where the parameter η = (1−k)−1/Le
1−1/Le

can take both signs. As Le→∞, then η → 1− k,
which is positive. The concentrations profiles satisfy

d2C̄j
dz2

+

[
d

dz
ln
(
1− φ̄

)
+ LeV

]
dC̄j
dz

+

[
V Le (1− k)

d

dz
ln
(
1− φ̄

)]
C̄j = 0. (5.20)

This equation can be transformed to a hypergeometric equation

d2C̄j
dξ2

ξ (1− ξ) +
dC̄j
dξ

[c− ξ (1 + a+ b)]− abC̄j = 0, (5.21)

where a = −1, b = −Le(1−k)
η

, c = − 1
η
and

ξ (z) = 1− (Le− 1) η

Le (1− k) δ
e−V z. (5.22)

Note that (5.21) is a linear second-order differential equation with three regular singular

points2 ξ = 0, 1 and∞ as defined in [1]. We consider the case when none of the numbers

2Consider equation of the form P (x) y′′ + Q (x) y′ + R (x) y = 0 and suppose that P , Q and R

are polynomials, and P (x0) = 0. Then x0 is a regular singular point if limx→x0
(x− x0) Q(x)

P (x) and

limx→x0
(x− x0)

2 R(x)
P (x) are both finite.
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c, c− a− b, a− b is equal to the integer. Solution of equations (5.19) and (5.20), then

have the form:

φ̄ (z) = 1− (1− φ0) (ξ (1) /ξ (z))
1
η , (5.23a)

C̄j (z) = αjw1(x) (z) + βjw2(x) (z) for j = 1, 2, (5.23b)

where wi(x) refers to the i-th independent solution around ξ = x. Their form is deter-

mined by regime of ξ, defined by the values of V , Le, k and Tbot (or Ttop).

For ξ < 0 the expansion around the regular singular point ξ = 0 can be used3

w1(0) = 2F1 (a, b; c; ξ) , (5.24a)

w2(0) = ξ1−c
2F1 (a− c+ 1, b− c+ 1; 2− c; ξ) . (5.24b)

When ξ ∼ 1 for all z, then the pair of independent solutions is defined as

w1(1) = 2F1 (a, b; a+ b+ 1− c; 1− ξ) , (5.25a)

w2(1) = (1− ξ)c−a−b 2F1 (c− b, c− a; c− a− b+ 1; 1− ξ) . (5.25b)

In the case of large ξ(z), we have

w1(∞) = ξ−a 2F1

(
a, a− c+ 1; a− b+ 1; ξ−1

)
, (5.26a)

w2(∞) = ξ−b2F1

(
b, b− c+ 1; b− a+ 1; ξ−1

)
. (5.26b)

The main building block of independent solutions of (5.21) is the hypergeometric series

2F1 (a, b; c; ξ) =
∞∑

n=0

(a)n (b)n
(c)n

ξn

n!
, (5.27)

as defined in [1, p. 563], where (a)n = a (a+ 1) (a+ 2) · · · (a+ n− 1) is the rising

factorial. The rising factorial can be expressed as a ratio of Gamma functions (a)n =

Γ (a+ n) /Γ (a). The hypergeometric series is convergent for |ξ| < 1. Constants αj and

βj (for j = 1, 2) can be expressed as the solutions to the system of algebraic equations

depending on type of BCs. Note that the choice of BCs influences the general solution

for the base state only through the parameter group δ. Applying BC of type CC, we

obtain

αj =

w2(x)(1)

w2(x)(0)
Cjbot − (Cjbot + 1)

w2(x)(1)

w2(x)(0)
w1(x) (0)− w1(x) (1)

, βj =
(Cjbot + 1)− w1(x)(1)

w1(x)(0)
Cjbot

w2(x) (1)− w1(x)(1)

w1(x)(0)
w2(x) (0)

, (5.28)

3If ξ < −1, the hypergeometric series is not convergent and its analytical continuation along the

negative real axis can be used.
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for j = 1, 2. In FC case, we obtain

αj =

w2(x)(1)

w′
2(x)

(0)
− Cjtop

w2(x)(1)

w′
2(x)

(0)
− w1(x) (1)

, βj =
Cjtop − w1(x)(1)

w′
1(x)

(0)

w2(x) (1)− w1(x)(1)

w′
1(x)

(0)
w′2(x) (0)

, (5.29)

for j = 1, 2. The derivatives of w2(x) can be obtained using the formula from [1, p. 557]:

d

dξ
ξc−1

2F1 (a, b; c; ξ) = (c− 1) ξc−2
2F1 (a, b; c− 1; ξ) . (5.30)

The solution for C̄j (z) takes the particularly simple forms when the segregation

coefficient k attains some special values.

• k = 1, the solid fraction is increasing function of z. Closed form solution is

presented in [22].

• k = (Le− 1) /Le, concentration profiles take a form of the extended confluent

hypergeometric function, details are in [22].

• k = 0, qualitative characteristics of all fields remain intact, but concentration

profiles can not be expressed as hypergeometric function because c = −1 is

negative integer. Concentration profiles then take form of exponential function,

details are in [22].

5.4 Asymptotic results for Le→∞

For example in binary case, the helium–water mixture has Le ∼ 23, while the ethanol–

water mixture has Le ∼ 170.4 Expanding (5.22) in the limit of large Le, we obtain:

ξ (z) =

(
1− e−V z

δ

)
+

e−V z

δ (1− k)

1

Le
, (5.31)

where the second term cannot be omitted because the first term may became O(1/Le)

or smaller due to a combination of relatively small values of V , 1− k and Tbot ∼ −1 in

C–C case or Ttop ∼ 0 in F–C case.

It is sufficient to consider only two cases ξ < 0 and ξ > 1, because the case 0 < ξ < 1

corresponds to Tbot > −1. The values of V and Tbot (or Ttop) define the regime of ξ

and so determine the pair of independent solutions which should be used to construct

solution. The summary is in table 1. Note that regime of ξ ∼ 1 is not present within
4The values of mass diffusivity and thermal diffusivity are from [11], [9], respectively.
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Table 1: Regimes of ξ with different pairs of independent solutions and parameter constraints

in limit of large Le

Regime of ξ
Independent

solutions
Type CC Type FC

ξ < 0 w1(0), w2(0) 1 < −Tbot < 1
1−e−V e−V < −Ttop < e−V /V

ξ > 1 w1(∞), w2(∞)
1

1−e−V < −Tbot e−V /V < −Ttop

limit of large Le only in limit C1bot → −∞.

At first we will consider regime ξ < 0, the independent solutions are

w1(0) =

(
1− e−V z

δ

)
[1− Le (1− k)] , (5.32a)

w2(0) = ξk/(1−k) (1− ξ)Le 2− k
(1 + Le (1− k))2 [1 +O (1/Le)] . (5.32b)

The expression (5.32a) can be obtained from (5.24a) using the relation

2F1 (−m, b; c; ξ) =
m∑

n=0

(−m)n (b)n
(c)n

ξn

n!
, (5.33)

from [1, p. 561], where m is positive integer. Asymptotic expansion for (5.32b) can be

derived using the Euler linear transformation formula from [1, p. 559]:

2F1 (a, b; c; ξ) = (1− ξ)(c−a−b)
2F1 (c− a, c− b; c; ξ) (5.34)

and then using the fact from [1, p. 565], that a real-valued hypergeometric function for

fixed a, c, ξ, (c 6= 0,−1,−2 . . .), 0 < |ξ| < 1 and large |b| satisfies

2F1 (a, b; c; ξ) =

[
Γ (c)

Γ (c− a)
(−bξ)−a +

Γ (c)

Γ (a)
ebξ (bξ)a−c

] [
1 +O

(
|bξ|−1

)]
. (5.35)

Now we consider ξ > 1, the pair of independent solutions is

w1(∞) = ξ − 1

Le (1− k)
, (5.36a)

w2(∞) = ξ
k−2
1−k (ξ − 1)Le +O(1/Le). (5.36b)

The form (5.36a) can be obtained from (5.26a) using (5.33). The asymptotic expansion

of second independent solution (5.36b) is obtained when transform (5.34) is applied to
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(5.26b). Then is used asymptotic expansion for large Le defined by relation from [1,

p. 565]:

2F1 (a, b; c; ξ) =
m∑

n=0

(a)n (b)n
(c)n

ξn

n!
+O(|c|−m−1), (5.37)

where a, b, ξ are fixed and |c| large. In the following sections we will use pairs (5.32a),

(5.32b) and (5.36a), (5.36b) to construct asymptotic expansions for different boundary

condition types.

5.4.1 C–C case

The leading-order asymptotic expansion of (5.23) for BCs (5.28) in the regime ξ < 0,

or equivalently 1 < −Tbot < 1/
(
1− e−V

)
, takes the form

φ̄ (z) = 1− (1− φ0)

(
ξ(z)

ξ(1)

) −1
1−k

+O(1/Le), (5.38a)

C̄j (z) =
[Cjbot (ϑ (1)− 1)− 1] T̄ (z) + (Tbot − Cjbot)ϑ (z)

Tbot (ϑ (1)− 1)− 1
+O(1/Le), for j = 1, 2,

(5.38b)

where

ϑ (z) =

(
ξ (z)

ξ (0)

)k/(1−k)

e−V Lez. (5.39)

The function ϑ (z) is positive and monotonically decreasing for z ∈ [0; 1], and evaluates

to ϑ (0) = 1 and ϑ (1) = O(e−Le). Thus ϑ (1) is exponentially small as Le→∞. Note

that the importance of the term
(
ξ(z)
ξ(0)

)k/(1−k)

grows when the term
(

1− e−V z
δ

)
in (5.31)

is not O (1), otherwise ϑ (z) ∼ e−V Lez. By neglecting exponentially small terms, we

obtain:

φ̄ (z) = 1− (1− φ0)

(
ξ(z)

ξ(1)

) −1
1−k

+O(1/Le), (5.40)

C̄j (z) =
Cjbot + 1

Tbot + 1
T̄ (z) +

Cjbot − Tbot
Tbot + 1

ϑ (z) +O(1/Le), for j = 1, 2. (5.41)

The formulae analogous to (5.41) in the regime ξ > 1, or equivalently −Tbot >

1/
(
1− e−V

)
, are

C̄j (z) = Cjbot
ξ (z)

ξ (1)
+ ϑ (z)

(
ξ (z)

ξ (0)

) −2
1−k
[
Cjbot − (Cjbot + 1)

ξ (z)

ξ (1)

]
+O(1/Le) for j = 1, 2.

(5.42)
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The formulae (5.41) and (5.42) are asymptotically equivalent if

(
1− e−V

)
(1− k) = O(1) as Le→∞.

The second term of (5.41) vanishes as |C1bot − C2bot| is small, in that case the first

term dictates concentration profiles to be proportional to T̄ and hence monotonic.

Therefore non-monotonicity of concentration profile can occur only when difference

|C1bot − C2bot| exceeds some threshold. This will be addressed in §5.7.

In figure 21 we compare the analytical solution with the leading-order solution

(5.40). The good agreement is seen even for relatively low values of Le. Important

property of (5.40) is that when k = 0 it reduces to exact solution [22].

Figure 21: Comparison of the explicit solution calculated from (5.23) and (5.28) (solid)

and the leading-order asymptotic solution (5.40) (dashed) in the regime of ξ < 0. Parameter

values used here are m1 = m2 = 0.5, Le1 = Le2 = 25, k1 = k2 = 0.3, ks/kl = 1, cs/cl = 1,

S = 0, V = 0.1. The BCs are C1bot = −2, C2bot = −5 and φ0 = 0.1.

When introducing the asymetry of BCs by employing large |C1bot| while C2bot is
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kept O(1), the asymptotic expansion of (5.38) correct to O(1/C2
1bot) takes the form

φ̄ (z) = φ0 +
1

m1C1bot

(1− φ0)

(1− k)

e−V − e−V z

1− e−V
+O(1/C2

1bot), (5.43a)

C̄1 (z) = C1bot + 1− e−V Lez +
1

m1

[
1− e−V z

1− e−V
− 1 + e−V Lez

]
1

C1bot

+O(1/C2
1bot),

(5.43b)

C̄2 (z) = C2bot + 1− e−V Lez+
[
C2bot + 1

m1

(
1− e−V z

1− e−V
− 1 + e−V Lez

)
− e−V Lez

m1

k

1− k
1− e−V z

1− e−V

]
1

C1bot

+O(1/C2
1bot).

(5.43c)

It can be observed, that boundary condition at z = 0 is satisfied exactly, while boundary

condition at z = 1 is satisfied only up to exponentially small terms.

5.4.2 F–C case

The leading-order asymptotic expansion of (5.23) for BCs (5.29) valid for ξ < 0, or

equivalently e−V < −Ttop < e−V
V

, has the form

φ̄ (z) = 1− (1− φ0)

(
ξ(z)

ξ(1)

) −1
1−k

+O(1/Le), (5.44)

C̄1 (z) =

{
ϑ (1) + V C1top

[
Le+ k

1−k
1−Le(1−k)

Le(1−k)(δ−1)+1

]}
T̄ (z) + (C1top − Ttop)ϑ (z)

ϑ (1) + V Ttop

[
Le+ k

1−k
1−Le(1−k)

Le(1−k)(δ−1)+1

] [1 +O(1/Le)]

(5.45)

for j = 1, 2. This can be further simplified by omitting the exponentially small terms

yielding

φ̄ (z) = 1− (1− φ0)

(
ξ(z)

ξ(1)

) −1
1−k

+O(1/Le), (5.46a)

C̄j (z) =
C1top

Ttop
T̄ (z) +

Cjtop − Ttop
Ttop

1

V
(
Le+ k

1−k
1

1−δ
)ϑ (z) +O(Le3) for j = 1, 2.

(5.46b)

For ξ > 1 or equivalently −Ttop > e−V
V

, the analogue of (5.46b) is

C̄j (z) = Cjtop
ξ (z)

ξ (1)
+

1−
[
CjtopV + e−V

]
Le(1−k)−1
Le(1−k)δ

− 1

V
[
k−2
1−k + Le

] Le(1−k)−1
Le(1−k)δ

− V Le
ξ (0)

ξ (1)
ϑ (z)

(
ξ (z)

ξ (0)

) −2
1−k

+O(Le3) for j = 1, 2.

(5.47)

Figure 22 is a representative plot showing the validity of asymptotic expansion (5.46)

for relatively low Le = 25.
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Figure 22: Comparison of the explicit solution calculated from (5.23) and (5.29) (solid)

and the leading-order asymptotic solution (5.46) (dashed) in the regime of ξ < 0. Parameter

values used here are m1 = m2 = 0.5, Le1 = Le2 = 25, k1 = k2 = 0.3, ks/kl = 1, cs/cl = 1,

S = 0, V = 0.1. The BCs are C1bot = −2, C2bot = −5 and φ0 = 0.1.

5.5 Asymptotic results for C1bot → −∞

In this section, we consider the limit C1bot → −∞ with C2bot = O(1). By swapping the

solutal indices the results for the limit C2bot → −∞ with C1bot = O(1) can be obtained.

In [19] the limit of small solidification speeds V → 0 was considered, subject to

S = S̄/V 2 and Cjbot = C̄jbot/V
2 with S̄ and C̄jbot both O(1). It has been shown that in

case when Le1 = Le2 = Le, single–solute–diffusive regime, the ratio of C1bot/C2bot plays

a crucial role in determining the linear stability scenario which the system exhibits. In

this limit, for relatively large Le the base state concentration profiles are qualitatively

similar to our findings in this section. The main difference is in generally smaller

parametric space exhibiting non-monotonic behaviour of concentration profiles.

For large values of C1bot, the scaled coordinate is ξ = 1 + O(1/C1bot), therefore

we will employ two independent solutions (5.25a) and (5.25b) around regular singular
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point ξ = 1 of (5.21). Asymptotic expansion of (5.25a) and (5.25b) in the limit of large

|C1bot| correct to O(1/C2
1bot) takes the form

w1(1) (z) = 1− e−V z

δ
= 1− e−V z

m1C1bot (1− e−V )
+O(C−2

1bot), (5.48a)

w2(1) (z) = e−V Lez
[
1− Le− 1

Le+ 1

k

1− k
e−V z

1− e−V
1

m1C1bot

+O(C−2
1bot)

]
. (5.48b)

where formulae (5.48a) and (5.48b) were obtained using (5.33) and series of hypergeo-

metric function around zero 2F1(a, b, c, z) = 1 + abz
c

+O(z2) respectively.

For φ (z), C̄1 (z) and C̄2 (z) we have

φ̄ (z) = φ0 +
1

m1C1bot

(1− φ0) (Le− 1)

(1− k)Le

e−V − e−V z

1− e−V
+O(1/C2

1bot), (5.49a)

C̄1 (z) = C1bot −
m2

m1

1− e−LeV z

1− e−LeV
+

1

m1

1− e−V z

1− e−V
+O(1/C1bot), (5.49b)

C̄2 (z) = C2bot +
1− e−LeV z

1− e−LeV
+O(1/C1bot). (5.49c)

Figure 23 is a representative plot showing the validity of asymptotic expansion (5.49)

even for relatively low value of |C1bot| and for Le = 25.

It is instructive to examine the behaviour of (5.49) when product LeV = O(1),

while V → 0 and Le→∞. In leading-order, (5.49) reduces to:

φ̄ (z) ∼ φ0 +
1

m1C1bot

(1− φ0)

(1− k)
(z − 1) , (5.50a)

C̄1 (z) ∼ C1bot −
m2

m1

(
1− e−LeV z

)
+

z

m1

, (5.50b)

C̄2 (z) ∼ C2bot + 1− e−LeV z. (5.50c)

It can be observed that the solid fraction is constant at leading-order with the linear

correction term at O(1/C1bot). Concentration profile of solute j with smaller |Cjbot|
exhibits non-monotonic behaviour.

5.6 Monotonicity of solid fraction

The base-state solid fraction does not possess any local extrema. The physically ad-

missible solution with dφ/dz < 0 exists provided

δ <
(Le− 1) η

Le (1− k) eV z
. (5.51)
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Figure 23: Comparison of explicit solution calculated from (5.23) with constants (5.28)

(solid) and leading-order of asymptotic expansions (5.49a) (dashed) in the regime of |C1bot|
large. Parameter values used here are m1 = m2 = 0.5, Le1 = Le2 = 25, k1 = k2 = 0.3,

ks/kl = 1, cs/cl = 1, S = 0, V = 0.1. The BCs are C1bot = −10, C2bot = −2 and φ0 = 0.1.

We define point zc at which φ is discontinuous and switches monotonicity:

zc ≡
1

V
ln

(
Le (1− k) δ

(Le− 1) η

)
.

If η > 0 we have three different scenarios:

(a) If zc > 1 then φ̄ is decreasing.

(b) If zc ∈ [0; 1] then solution exhibits discontinuity at point zc.

(c) zc is not well defined or negative φ̄ is increasing.

In following section we illustrate this phenomena with the C–C boundary condition

applied.
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5.6.1 C–C case

Qualitatively representative behaviour of φ̄ in C–C case is depicted on the figure 24.

In C–C case monotonicity of solid fraction is established when:

m1C1bot +m2C2bot < −
1 +max{Le (1− k) , 1}

(
eV − 1

)

Le (1− k) (eV − 1)
. (5.52)

The leading order of the expansion as V → 0 reduces expression (5.52) to:

m1C1bot +m2C2bot <




−1− 1

V Le(1−k)
Le (1− k) > 1

− 1
V Le(1−k)

Le (1− k) < 1.

The main importance of these bounds is the identification of parameter regions, in

which the base state solution is physically meaningful and the use of the model is appro-

priate. Generally the effects of single parameter on the size of appropriate parameter

region can be characterized as follows:

• Increase in Le increases the area of well defined region.

• Increase in V increases the area of well defined region.

• Decrease in k increases the area of well defined region.

• Change in m1 accounts for change of slope of region boundary.

5.7 Parametric dependence of region of static stability

The base state is statically stable stratified if density of fluid is decreasing function

of z, therefore non-monotonic behaviour of concentration profile can induce statically

unstable situation.

In C–C case the non-monotonic behaviour of concentration profiles is a function

of BCs: C1bot and C2bot. Following calculations present extension of [22] allowing us

to evaluate effect of non-zero segregation coefficient k. When considered BCs of type

C–C in the limit Le → ∞, using the asymptotic expansion formula (5.38) for the

base state solution of C̄1 presented in §5.4.1 we have computed the boundaries of area

within which both concentration profiles are monotone. Boundaries are determined

using equations dC̄j
dz

∣∣∣
z=0

= 0 for j = 1, 2. This approach gives us two implicit functions
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Figure 24: This plot shows three representative base state profiles of φ̄, in each of the

three regions of C1bot vs. C2bot plane. By × is denoted position in C1bot-versus-C2bot plane

in which they occur. The case with C–C type BCs is plotted. Parameter values used are

Le1 = Le2 = 25, k1 = k2 = 0.3, V = 0.1, m1 = 0.5, φ0 = 0.1 with values C1bot and C2bot as

shown. In the region marked by (a) base state profile is well defined and decreasing function

of z. In the regions marked by (b) and (c) base state is not defined due to negative values of

φ̄.

of concentration BCs C1bot, C2bot defined by:

C1bot =
TbotΩ− 1

1 + Ω
, C2bot =

TbotΩ− 1

1 + Ω
, (5.53)

where Ω :=
(
1− e−V

) [ k(Le−1/(1−k))
Le(1−k)Tbot(1−e−V )+1

− Le
]
. By closer inspection of (5.53), we

can see that it defines quadratic expression in variables C1bot and C2bot.

In figure 25, three qualitatively different scenarios are depicted:

(a) profile of C̄2 is non-monotonic; (b) both concentration profiles are monotonic and

(c) profile of C̄1 is non-monotonic.
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Figure 25: This plot shows classification of qualitatively different compositional profiles in

dependence on concentration BC in the C2bot-versus-C1bot plane. Lines along which the profiles

change their monotonic behaviour were determined using asymptotic result (5.53). In the grey

region at the top right corner the model is not physically meaningful. Three qualitatively

different scenarios are depicted with BC as shown. Parameters used were Le = 50, k = 0.7,

V = 0.1, φ0 = 0.1 and m1 = 0.5.

5.7.1 Limiting case Le→∞, V → 0

We consider a limit of small pulling speeds V and large Lewis numbers defined by

Le = L̄e
V

with L̄e = O(1) as V → 0. The assumption 1 − k = O(1) remains intact.

Under these assumptions implicit curves (5.53) in variables C1bot and C2bot, can be

transformed into the form:

Cjbot

(
Tbot (Le− 1) + 1− 1

Le (1− k)

)
−
(
T 2
bot + 2Tbot +

1

Le (1− k)

)
= 0 for j = 1, 2.

(5.54)

Case when segregation coefficients are zero i.e. (1 − k) = 1 causing curves of mono-

tonicity to be linear, was studied in [22]. Mentioned results can be obtained by setting

56



k = 0 in (5.54):

C1bot =
1 +m2L̄eC2bot

m2L̄e− 1
, C1bot =

(
m1L̄e− 1

)
C2bot − 1

m1L̄e
. (5.55)

Due to the symmetry in Lewis numbers and segregation coefficients, we will consider

only the branch corresponding to dC̄1

dz

∣∣∣
z=0

= 0. For general k > 0 a physically valid

root of (5.54) is

C1bot =
1− (1− k) L̄e

[
M −m2C2bot

(
1− L̄eM

)]
−
√

1− (1− k) L̄eQ (m2C2bot)

2L̄e (1− k)m1

(
m2L̄e− 1

) ,

(5.56)

where quadratic term is defined as

Q (x) = − (1− k) L̄e
(
L̄e− 1

)2
x2 − 2

{
1 + L̄e

[(
L̄e− 2

)
(1− k)− kM

]}
x+ 2− L̄e

(
1− kM2

)
,

(5.57)

with M = m2 − m1. By computing oblique asymptote to C1bot(C2bot) in case when

C2bot → −∞ we have:

C1bot =
1 +m2L̄eC2bot

m2L̄e− 1
+

k

(1− k)
(
L̄e− 1

) (
m2L̄e− 1

) , (5.58)

where the first term represents curve of monotonicity switch obtained with k = 0 and

the second term represents a correction when k > 0. Note that, as k → 1 approaches

1, the region of monotonicity increasingly changes it’s size, but whether it is increases

or decreases depends on a sign of m2L̄e− 1. In figure 26 can be observed the effect of

non-zero segregation coefficients on the monotonicity of concentration profiles. When

Le is relatively low, sensitivity to change in segregation coefficient is significant. As

Le→∞ effects of non-zero segregation coefficients diminish.

5.7.2 Position of local extrema

When function ϑ(z) ∼ e−V Lez, position of the local extreme of the concentration profile

can be computed using (5.40) and (5.46) for C–C and F–C boundary condition types

respectively

zCC =
1

V (Le− 1)
ln

[
Cjbot − Tbot
Cjbot + 1

Le
(
1− e−V

)]
, (5.59)

zFC =
1

V (Le− 1)
ln

[
Cjtop − Ttop

Cjtop

Le (1− δ)
Le (1− δ) + k/1− k

]
. (5.60)
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Figure 26: Plot depicting a shape of statically stable region for different values of Le and k.

The solid line corresponds to k = 0.1 and dashed line corresponds to k = 0.9. Used values of

other parameters are V = 0.1, m1 = 0.5, φ0 = 0.1.

When C1bot →∞ is considered the local extreme of the concentration profile computed

from (5.49):

zCC =
1

V (Le− 1)
ln

[
m2Le

(
1− e−V

)

(1− e−LeV )

]
, (5.61)

is the same as the one from limit C1bot →∞ of expression (5.59). This representation

defines parametric combination of Le, V and m2 for which both concentration profiles

are monotonic independent of the choice of BCs:

m2Le
(
1− e−V

)
. 1, (5.62)

which holds for all values of k satisfying 1−k = O(1). Figure 27 shows parameter space

Le–V divided into grey and white region by line m2Le
(
1− e−V

)
= 1. Insets in this

figure show representative plots of boundary condition sets allowing non-monotonic

concentration profiles, analogous to figure 26. In grey region case (a) shows a bounded

set of BCs which allows non-monotonic concentration profile. Therefore when C1bot →
−∞ monotonic behaviour of concentration profiles is expected.

In white region case (b) shows that BCs are divided by a linear relation, as was observed

only by numerical calculation in [7]. Therefore when C1bot → −∞ non-monotonic

behaviour of attributable concentration profile is expected.
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Figure 27: Plot of (5.62) in the parametric plane Le-versus-V . In the grey region both

concentration profiles are always monotonic when for both solutes Cjbot → −∞, while in the

white region there always exists boundary condition setup with both Cjbot → −∞ in which

one of the concentration profiles is non-monotonic. Inset (a) shows case when set of BCs

allowing non-monotonic concentration profile is bounded. On the inset (b) set of BCs allowing

non-monotonic behaviour covers in both limiting cases C1bot → −∞ while C2bot = O(1) and

C2bot → −∞ while C1bot = O(1). The results are shown for m1 = m2 = 0.5.
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Conclusions

Explicit and asymptotic solutions are useful for identification of key aspects defining

the process of solidification. In this thesis we introduce two problems involving solidifi-

cation and provide explicit solutions in interesting parametric regimes. The first is the

solidification of a binary alloy pulled horizontally, and the second is the solidification

of a ternary alloy in vertically moving frame of reference.

In §2 we have introduced the main concepts of solidification of multicomponent

solidification from continuous-mechanics perspective. The governing equations have

been presented in the general frame of reference, which includes situations described

in following chapters. §§3 and 5 expand the original results presented by the present

author in papers [27] and [23] respectively.

In §3 we have described the solidification of a binary alloy over a horizontally moving

substrate, with the most important parameters being the scaled far-field velocity U and

the Prandtl number Pr. The results obtained can be compared to [26], where the mushy

layer is absent, but the geometry of the problem is similar. The dimensional thickness

of the solid phase was proportional to U∗1/2∞ /U∗0 , provided Pr � U , in contrast to the

present case where the dimensional thickness is proportional to 1/U
∗1/2
0 . This can be

observed by examining the dimensional position of the mush–liquid interface in terms

of U∗0 and U∗∞, given by (3.62b) and plotted in figure 13 fora range of values of U . An
interesting feature is the non-monotonicity in the mush-liquid interface position as a

function of U∗0 . Another difference from the problem without the mush is, that the

effect the velocity ratio on the thermal and compositional boundary layer is, to leading

order in small U negligible (see figure 12). In the problem without the mush thermal

and compositional boundary layers ahead of the solid–liquid interface have the size of

O(U−1/2). in figure 7 we show the dependence of λb and Cb on the non-dimensional

parameters Pr, U , Le and Γ evaluated from (3.51b) and (3.49) respectively. Notable is

the independence of concentration and the mushy layer thickness on Pr, the fact that

the mushy layer thickness is an increasing function of Γ and Le, and the transition

of the interfacial concentration and interface position to the small diffusivity limit as

Le → ∞. For U = 0, we have shown that λb is an increasing function of both Γ

and Le. The integral relationships (3.44) and (3.65) that quantify the total amount of

solute contained within the mushy region were presented. When Pr is small, the latter
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one is proportional to C − 1, with the correction of O(Pr/Le). The O(Pr/Le) effect

is weakened as the values of Γ approach unity. The dependence of growth constants

λa and λb, calculated from(3.48) and (3.49) respectively, on Γ is plotted in figure

14. A comparison to [37] is done by considering the mush without horizontal pulling,

calculated from (3.48) and (3.64), where U = 1. Note that in both cases there is a

critical value Γ = Γmin for which λa = λb. For Γ < Γmin we have λa > λb, which is not

physically admissible. In figure 15 we show Γmin as a function of U , the values of Γmin

are found to be increasing function of U and to attain their maximum values at U = 1.

Thus, the horizontal pulling and the resulting flow in the liquid enhance the formation

of a mushy region: when the system is pulled horizontally, the range of Γ for which the

mush exists is larger than that for the system without pulling. The fact that there is

a value of Γ below which the mushy region does not exist can be used, together with

definition Γ = Γ∗∆C∗/∆T ∗, to derive the bounds on C∗∞ or T ∗∞. With ∆C∗ fixed, we

have an upper bound for the far-field temperature for which the mushy region exists:

T ∗∞ < T ∗L (C∗0) + Γ∗∆C∗/Γmin. Analogously with ∆T ∗ fixed, there is an upper bound

for far field concentration: C∗∞ < C∗0 − Γmin∆T ∗/Γ∗. These bounds are found to be

higher in the case of with horizontal pulling, than in the case without pulling, studied

in [37].

The governing equations for the full model of directional solidification of ternary

alloy is given in §4. The model consists of the liquid layer, primary mush and secondary

mush in the frame of reference moving with constant vertical speed V ∗.

In §5 we have analysed the model of solidification of primary mushy layer described

in [7], [19] and [20], while considering a number of different types of boundary con-

ditions. In this thesis we have introduced F–C, C–F and F–F types of boundary

conditions, where C or F refer to the solute concentration or solutal flux fixes at the

boundary. In [19], the case of small macroscopic speed of solidification V was con-

sidered. Here we have considered a finite V . We have been able to identify explicit

solutions for the base state in terms of hypergeometric functions. In §5.4 we construct

an asymptotic expansion of the base state solution in the limit of large Lewis number

Le. The leading-order asymptotic expansions plotted in figures 21 and 22 show very

good accuracy even for low values of Le. In §5.5 we considered the limit of large |C1bot|
with C2bot kept O(1), causing the asymmetry in boundary conditions reflected in the
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non-monotonicity of C̄1 profile. This result can be compared with the results in [19]

where a limit of jointly large |C1bot| and |C2bot| was considered. A notable feature of the

obtained expansions is that they preserve non-monotonic behaviour of concentration

profiles. The non-monotonic behaviour of concentration profiles may lead to statically

unstable stratification of interstitial fluid, causing the potential onset of convection

originating in the layer. Depending on the solutal expansion coefficients, the results

from §5.7 identify the critical curves of static stability in the parameter space of C1bot

vs. C2bot. We show that the critical lines are in general non-linear and that in this case

approach the oblique asymptote as Le → ∞. In figure 25 our asymptotic results are

compared to the numerical results of [7]. The grey region shows, where the model is

not physically meaningful. Figure 26 shows the effect of segregation coefficients on the

stability of the base state solution, noting that it is more pronounced at lower values

of Le. Figure 27 reveals the existence of the parametric region in the space Le vs.

V (shown grey), in which the non-monotonic concentration profiles are allowed in a

bounded portion of the (C1bot, C2bot) plane.
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Abstract We study the solidification and flow of a binary alloy over a horizontally moving
substrate. A situation in which the solid, liquid and mushy regions are separated by the sta-
tionary two-dimensional interfaces is considered. The self-similar solutions of the governing
boundary layer equations are obtained, and their parametric dependence is analysed asymp-
totically. The effect of the boundary layer flow on the physical characteristics is determined. It
is found that the horizontal pulling and the resulting flow in the liquid enhance the formation
of the mushy region.
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1 Introduction

During the solidification ofmulticomponentmixtures, such aswater solutions ormetal alloys,
a two-phase, or mushy, region often forms as a result of the morphological instability of a
planar phase interface (Worster 2000). During the growth of such an unstable interface,
the protrusions of the solid into the liquid phase grow to form a dendritic matrix, which,
when viewed from the macroscopic point of view, behaves as a reactive porous medium.
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The local porosity of the mushy region can be space and time dependent as a result of the
solidification andmeltingof the dendrites. Typically, the solid formedduring solidificationhas
the composition that is different from that of the original liquid, one of the components being
released ahead of the solidifying interface. If the lighter component is released, convective
motions usually take place within the mushy region, leading eventually to the formation
of localized, narrow channels, called ‘chimneys’, through which cold, solute-enriched fluid
flows to the liquid region ahead of the mush (Schulze and Worster 1999). As a result of
chimney formation, structural defects can appear in the solidifiedmetal alloys, an effect that is
undesirable in order to produce high-qualitymaterials (Fowler 1985). During solidification of
sea ice, which also has the character of a mushy region, the brine channels, resulting from the
chimney formation, have an important role in the ocean dynamics in polar regions (Worster
and Jones 2015). Solidification of mushy regions is also of interest from the point of the
structure of the Earth’s inner core since it is believed that the boundary between the inner and
the outer cores is dendritic (Deguen et al. 2007). However, the precise characteristics of the
possible mushy region at the inner core boundary are still a subject of current investigation.

Amodel of diffusion-controlled growth of a mushy region during solidification of a binary
alloy was studied by Worster (1986). The alloy solidified from the cooled bottom boundary,
and the solid/mush and the mush/liquid interfaces were planar. The model was based on the
local conservation of heat and solute, and the growth rates of the interfaces were controlled
by the diffusive transport of solute away from the interfaces. A similar model, but with equal
thermal properties of the solid and liquid phases, alongwith the negligible latent-heat release,
was studied by Gewecke and Schulze (2011b). In the so-called directional solidification,
unlike the diffusion-controlled solidification, the interfaces are stationary with respect to the
laboratory frame of reference, while the solidifying system is pulled at a constant speed
through a given temperature gradient (see, for example, Davis 2001).

An experimental configuration related to the continuous spin casting in material engineer-
ing (see the review by Steen and Karcher 1997) is that of a cooled, horizontal plate moving
horizontally at a constant speed. The solidifying interfaces are stationary under the appropri-
ate conditions; however, unlike in the directional solidification described above, the interfaces
are not planar and there is a strong flow in the liquid phase. A steady boundary layer flow and
solidification of a binary alloy over a moving substrate with a two-dimensional solid/liquid
interface were analysed by Löfgren (2001) and later by Kyselica and Guba (2016). The sen-
sitivity of the solidifying system upon the scalar far-field velocity was analysed. Tangthieng
et al. (2002) and Tangthieng and Cheung (2003) considered the solidification over a hori-
zontally pulled substrate with a mushy region divided into a packing region consisting of
dendrites moving with the substrate and a dispersed region with dendrites free to move with
the fluid.

In the present paper, we combine the approach used by Kyselica and Guba (2016) with
that byWorster (1986) in order to formulate the problem studied by Tangthieng et al. (2002),
so that the local liquid fraction is to be governed by the local solute conservation. This is
in contrast to Tangthieng et al. (2002), who prescribed the relation between the local liquid
fraction and temperature based on the lever rule. Moreover, unlike Tangthieng et al. (2002),
we shall consider a simplified situation with the mushy region consisting only of the packing
region. The main question that is to be answered is: How do the pulling of the substrate and
the resulting flow influence the thickness of the mushy region? The present study provides
analytical self-similar solutions to a solidification problem with non-planar interfaces and
two-dimensional advection of heat and solute (see also Löfgren 2001; Kyselica and Guba
2016). We compare the results with a recent study by Kyselica and Šimkanin (2017) of
the mushy region over a moving substrate based on the global solute conservation and the

123

68



Solidification and Flow of a Binary Alloy Over a Moving…
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Solid
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Fig. 1 A definition sketch for the problem of solidification of a binary alloy over a horizontally moving
substrate. For description, see text

simplifying assumption of no solute diffusion in the liquid phase. Generally, the situations
involving analytical solutions with the flow are rare. Another example is the study by Guba
and Worster (2006) of a two-dimensional convection in a laterally solidifying mushy region.

The structure of the paper is as follows. In Sect. 2 we formulate the mathematical problem
and derive a reduced system of governing boundary layer equations. In Sect. 3 we identify
the self-similar solutions for the temperature, concentration and velocity fields in the liquid
phase, for the temperature, concentration and local liquid fraction in the mushy region, and
for the temperature field in the solid region. The growth constants defining the self-similar
positions of the solid/mush andmush/liquid interfaces are analysed in Sect. 4 in the casewhen
the ratio of the far-field horizontal velocity in the liquid phase to the speed of the moving
substrate is finite, while the case when the velocity ratio is zero is discussed in Sect. 5. Finally,
in Sect. 6 we give conclusions.

2 Mathematical Formulation

The region x > 0, z > 0 is filled with a binary alloy with far-field temperature and solute
concentration T∞ and C∞ at z → ∞, respectively. The solidification occurs at the cooled
substrate z = 0, which moves horizontally at constant speed U0 > 0, and its temperature is
maintained at a value TL(C0), where C0 is a reference liquid concentration and TL(C0) is a
liquidus temperature defined below.We assume that TL(C0) is above the eutectic temperature,
TE and below TL(C∞). We consider a situation where a mushy region forms between the
solid and liquid regions, with the stationary solid/mush and mush/liquid interfaces located at
z = a(x) and z = b(x), respectively. We denote the local volume fraction of the liquid phase
in the mushy region by χ . Note that while the interfaces are stationary, the solid moves with
the substrate, as do the solid dendrites in the mushy region. The situation described above is
sketched in Fig. 1.

To model the temperature, concentration and liquid fraction fields in the mushy region,
we use the governing equations based on the local conservation of heat and solute derived
by Schulze and Worster (2005) for a mushy region in which the speed of solid dendrites,
the velocity of the intersticial fluid and the rate at which interfaces propagate are, in general,
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TL (C)

C0

TL(C0)

C∞

T∞
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Cb

ΔC

ΔT

(C,T)

Fig. 2 Approximate binary phase diagram for a system with a mushy region, used in our paper. For the
description of particular symbols, see text. Shown is also a typical trajectory (C, T ) of a solidifying system
(solid lines with arrows)

distinct.However, in the present situation, the interstitial flow is trivial relative to the dendrites,
which is consistent with the Darcy equation in case the pressure field in the liquid portion
of the mushy region is purely hydrostatic. Moreover, unlike Schulze and Worster (2005), we
assume non-trivial solute diffusion in the liquid phase.

We denote u = (u, w) the flow velocity in the liquid and mushy regions, and the speed
of material points embedded in the dendrites is v = U0x̂, where x̂ is the unit vector in the
horizontal direction. According to the assumptions stated in the previous paragraph, the flow
field in the mushy region is u ≡ v so that the streamlines are parallel to the x-axis (see
Fig. 1). In the mushy region, the temperature and concentration fields are coupled by the
linear liquidus relationship

T = TL(C) ≡ TL(C0) − Γ̂ (C − C0), (2.1)

where Γ̂ is the constant, dimensional liquidus slope. A simple binary phase diagram used is
depicted in Fig. 2. We assume that there is no mass diffusion in the solid and that the solid
is free of solute.

We denote D the solutal diffusivity, κ the thermal diffusivity, L the latent heat per unit
mass, ρ the density and ν the kinematic viscosity. The thermal properties of liquid and solid
phases are set equal. We use U0 as a velocity scale and κ/U0 as a length scale. Since in
the rest of the paper we will work only with the dimensionless formulation, we denote the
dimensionless quantities by the same symbols as the dimensional ones. The dimensionless
temperature and concentration are defined by

θ = [T − TL(C0)]/�T and Θ = (C0 − C)/�C, (2.2a,b)

123

70



Solidification and Flow of a Binary Alloy Over a Moving…

respectively, with �T ≡ T∞ − TL(C0) and �C ≡ C0 −C∞. Note that θ and Θ take values
from the interval [0, 1]. In the mushy region,

∂θ

∂x
= ∂ 2θ

∂x 2 + ∂ 2θ

∂z 2
− S

∂χ

∂x
, (2.3a)

(Θ − C )
∂χ

∂x
+ χ

∂Θ

∂x
= ε

[
∂

∂x

(
χ

∂Θ

∂x

)
+ ∂

∂z

(
χ

∂Θ

∂z

)]
, (2.3b)

θ = θL(Θ) ≡ Γ Θ. (2.3c)

The dimensionless numbers are the inverse Lewis number ε, the Stefan number S , the
concentration ratio C and the scaled liquidus slope Γ , defined, respectively, by

ε = D/κ, S = L/cp�T, C = C0/�C, Γ = Γ̂ �C/�T, (2.4a−d)

where cp is the heat capacity. Note that the range ofC is (1,∞) and that ofΓ is (0, 1). To see
the latter, we first realize that Γ̂ = [Tb −TL(C0)]/(C0 −Cb) and that [T∞ −TL(C0)]/(C0 −
C∞) > [Tb − TL(C0)]/(C0 − Cb), where the inequality follows directly from the phase
diagram in Fig. 2. It is instructive to realize that the limiting case Γ = 1 corresponds to the
situation in which the far-field values (C∞, T∞) lie on the liquidus.

The flow field in the liquid region is given by the incompressible Navier–Stokes equations
and the temperature and concentration fields by the advection–diffusion equations. The tem-
perature field in the solid phase obeys the advection–diffusion equation with the advection
velocity being equal to v.

We seek self-similar solutions with a self-similar variable ζ , defined by

ζ = z/2x1/2, (2.5)

and with the dimensionless interfaces given as

a(x) = 2λax
1/2 and b(x) = 2λbx

1/2, (2.6a,b)

where λa and λb are positive constants yet undetermined. In order to derive the boundary
layer equations that allow self-similar solutions (see, for example, Löfgren 2001; Kyselica
and Guba 2016), we consider the limit

x → ∞, ζ = O(1), (2.7)

so thatna, nb ∼ ẑ to leading order, wherena andnb are the outward unit vectors normal to the
respective interfaces and ẑ is the unit vector in vertical direction. The physical motivation for
this limit is that the horizontal gradients of temperature and concentration are small relative
to the gradients in vertical direction.

Belowwe state the resulting system of boundary layer equations alongwith corresponding
boundary conditions.
Mushy region:

∂θ

∂x
= ∂ 2θ

∂z 2
− S

∂χ

∂x
, (2.8a)

(Θ − C )
∂χ

∂x
+ χ

∂Θ

∂x
= ε

∂

∂z

(
χ

∂Θ

∂z

)
, (2.8b)

θ = Γ Θ. (2.8c)
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Liquid phase:

u
∂θ

∂x
+ w

∂θ

∂z
= ∂ 2θ

∂z 2
, u

∂Θ

∂x
+ w

∂Θ

∂z
= ε

∂ 2Θ

∂z 2
, (2.9a,b)

u
∂u

∂x
+ w

∂u

∂z
= Pr

∂ 2u

∂z 2
,

∂u

∂x
+ ∂w

∂z
= 0. (2.10a,b)

Solid phase:
∂θ

∂x
= ∂ 2θ

∂z 2
. (2.11)

Mush/liquid interface:

S (1 − χb−)
db

dx
= ∂θ

∂z

∣∣∣∣
b−

− ∂θ

∂z

∣∣∣∣
b+

, (2.12a)

(C − Θb)(1 − χb−)
db

dx
= ε

(
∂Θ

∂z

∣∣∣∣
b+

− χb−
∂Θ

∂z

∣∣∣∣
b−

)
. (2.12b)

Solid/mush interface:

S χa+
da

dx
= ∂θ

∂z

∣∣∣∣
a−

− ∂θ

∂z

∣∣∣∣
a+

, (2.13a)

(C − Θa)χa+
da

dx
= εχa+

∂Θ

∂z

∣∣∣∣
a+

. (2.13b)

The dimensionless Prandtl number is defined as

Pr = ν/κ. (2.14)

When deriving conditions (2.12a,b) and (2.13a,b), we used the fact that the local dimen-
sionless velocities of the solid material elements relative to the solid/mush and mush/liquid
interfaces, respectively, satisfy − i · nh ∝ dh/dx , h = a, b. The boundary conditions on the
velocity, temperature and concentration fields are

z = 0 : θ = 0, (2.15a)

z = a : θa = Γ Θa+ , (2.15b)

z = b : u = 1, w = 0, θb = Γ Θb, (2.15c−e)

z → ∞ : θ → 1, Θ → 1, u → U , (2.15f−h)

where
U = U∞/U0 (2.16)

is the scaled far-field velocity.

3 Self-Similar Reduction

In this section we state the self-similar formulation of the above problem. The governing
equations in the liquid phase ahead of the mushy region can be sought explicitly in the limit
of small Prandtl number, which is typical of liquid metal flows. Equations (2.10a,b), together
with conditions (2.15c, d, h), define a viscous boundary layer problem (cf. Löfgren 2001;
Kyselica and Guba 2016).
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3.1 The Velocity Field in the Liquid Phase

We describe the velocity field via the stream function ψ defined by

u = ∂ψ/∂z, w = − ∂ψ/∂x, (3.1a,b)

and find that
ψ(x, z) = 2x1/2 f (ζ ; Pr), (3.2)

where f is a solution of the third-order boundary layer problem studied previously (Löfgren
2001; Kyselica and Guba 2016). In the limit Pr → 0, f takes the form

f ∼ λb(1 − U ) + U ζ + Pr
1 − U

2λb

[
1 − exp

(
− 2λb

ζ − λb

Pr

)]
, (3.3)

provided Pr/λb � λb in order that (3.3) remains asymptotic. The components of the flow
field have the following asymptotic forms

u ∼ 1 + (1 − U )

[
exp

(
− 2λb

ζ − λb

Pr

)
− 1

]
, (3.4a)

w ∼ − 1 − U

x1/2

{
λb + Pr

2λb
−

(
ζ + Pr

2λb

)
exp

(
− 2λb

ζ − λb

Pr

)}
, (3.4b)

as Pr → 0. Note that w > 0 (w < 0) when U > 1 (U < 1), see Fig. 3 (cf. Kyselica
and Guba 2016 in the absence of mushy region). For U = 1, there is no flow relative to the
solid phase, and, on replacing x with the time variable, the problem is formally equivalent to
the solidification of binary alloy with planar solid/mush and mush/liquid interfaces (Worster
1986).

3.2 The Temperature Fields in the Liquid and Solid Phases

Using (3.3), we can approximate the solution of (2.9a) in the following way (cf. Kyselica
and Guba 2016)

θ(ζ ) ∼ 1 + (θb − 1)
erfc

[
U 1/2(ζ − λb) + U −1/2Λ(λb)

]
erfc

[
U −1/2Λ(λb)

] , ζ > λb, (3.5)

where

erfc(ζ ) = 1 − erf(ζ ), erf(ζ ) = 2

π1/2

∫ ζ

0
e−s2 ds

Mush

Liquid

x

z

b(x)

u

U < 1 (U∞ <U0)

U = 1 (U∞ =U0)

U > 1 (U∞ >U0)

Fig. 3 Sketch of representative streamlines for qualitatively different values of U . In the mushy region, the
velocity field is equal to the velocity of the solid dendrites moving with the substrate
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and
Λ(λb) ≡ λb + Pr(1 − U )/2λb. (3.6)

Note that Λ(λb) ∼ λb + O(Pr) as Pr → 0.
In the solid phase, Eq. (2.11) can be solved to obtain the temperature field in the following

form

θ = θa
erf(ζ )

erf (λa)
, (3.7)

with θa yet to be determined from the conditions at the solid/mush interface. Hence, the
temperature gradient on the solid side of the interface is

θ ′
a− = 2λaθa

G(λa)
, (3.8)

with

G(λ) ≡ π1/2λ eλ2 erf(λ). (3.9)

3.3 Concentration Field in the Liquid Phase

The solution of (2.9b) can be approximated analogously as that of (2.9a). For Pr → 0 we
obtain

Θ(ζ) ∼ 1 + (Θb − 1)
erfc

[
(U /ε)1/2(ζ − λb) + (U ε)−1/2Λ(λb)

]
erfc

[
(U ε)−1/2Λ(λb)

] , ζ > λb. (3.10)

3.4 Liquid Fraction in the Mushy Region and the Interface Conditions

In the mushy region, the temperature and concentration fields are coupled via the liquidus
relationship (2.8c). Hence, Eq. (2.8b) determines the liquid fraction and after the self-similar
transformation it takes the following form

χ ′

χ
= 2ζΘ ′ + εΘ ′′

2ζ(C − Θ) − εΘ ′ , (3.11)

or, equivalently (cf. Gewecke and Schulze 2011b),

χ = χb− exp

(
−

∫ λb

ζ

2sΘ ′ + εΘ ′′

2s(C − Θ) − εΘ ′ ds
)

. (3.12)

The equation for the temperature field in the mushy region can be combined with the liquidus
relationship to yield

Θ ′′ + 2ζΘ ′ = − 2
S

Γ
ζχ ′. (3.13)

The conservation of heat and solute at the solid/mush interface, given by (2.13a,b), respec-
tively, can be expressed as

(2S λaχa+ + Γ Θ ′
a+)G(λa) = 2Γ λaΘa, (3.14a)[

2λa(C − Θa+) − εΘ ′
a+

]
χa+ = 0, (3.14b)

where we have used (2.8c), to obtain (3.14b). The conservation of heat and solute at the
mush/liquid interface, given by (2.12a,b), respectively, can be expressed as

2S (1 − χb−)λb = Γ
(
Θ ′

b− − Θ ′
b+

)
, (3.15a)
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2(C − Θb)(1 − χb−)λb = ε
(
Θ ′

b+ − χb−Θ ′
b−

)
. (3.15b)

To derive (3.15a), we have taken into account the condition of marginal equilibrium, intro-
duced by Worster (1986), ensuring that none of the liquid ahead of the mush/liquid interface
is constitutionally supercooled. In the self-similar terms, the marginal equilibrium reads

θ ′
b+ = Γ Θ ′

b+ . (3.16)

Though the differential equation (3.11) can be readily integrated to obtain (3.12), it is
instructive, however, to cast it into the following integral form∫ ζ

λa

(C − Θ)χ ds = 1
2

[
2ζ(C − Θ) − εΘ ′] χ, λa < ζ < λb, (3.17)

which turns out to be useful in further analysis. To derive (3.17), we used (3.14b). Evaluating
(3.17) at the mush/liquid interface, we obtain∫ λb

λa

(C − Θ)χ ds = 1
2

[
2λb(C − Θb) − εΘ ′

b−
]
χb− , (3.18)

where the integral represents the total dimensionless amount of solute contained within the
mushy region and takes only positive values.

Using (3.18), we can show that
χb− = 1 (3.19)

holds for general values of Stefan number so that the concentration gradient is continuous
across the interface, i.e. Θ ′

b− = Θ ′
b+ . To prove (3.19), we manipulate condition (3.15b) to

show that χb− = 1+ε(Θ ′
b− −Θ ′

b+)/[2λb(C −Θb)−εΘ ′
b−]. The denominator of the second

term in this expression is positive by (3.18), while the numerator is non-negative by (3.15a).
However, since 0 ≤ χb− ≤ 1, it follows that the numerator must be zero.

From condition (3.14b) we know that at least one of the quantities 2λa(C −Θa+)−εΘ ′
a+

or χa+ must vanish. However, in what follows, we neglect the effects of latent heat by setting
the Stefan number to zero, noting that the limit is regular. In that case, (3.12) and (3.17) can
be used to show that

2λa(C − Θa+) − εΘ ′
a+ = 0 (3.20)

and that the liquid fraction is continuous across the solid/mush interface.

4 Results for Finite U

The present problem involves several dimensionless numbers, which can be divided into
two groups. In the first group are the numbers characterizing the boundary layer flow in the
liquid phase: Prandtl number Pr and the velocity ratio U . To the second group belong the
numbers characterizing the solidification process without flow: Stefan number S , inverse
Lewis number ε, concentration ratio C and the dimensionless liquidus slope Γ . As stated at
the end of the previous section, we will assume that the Stefan number is negligible and set
S = 0 in the rest of our investigation. In this regular limit, the coupling between Eqs. (3.11)
and (3.13) vanishes.

To simplify our computations, it is instructive to consider the limit ε → 0. Before doing
that, however, we will consider the solutions for finite values of ε. The main goal of our
analysis is to study the effect of varying the velocity ratio on the mushy region dimensionless
thickness, proportional to λb − λa . We will consider both finite and small values of U .
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4.1 Solutions with ε = O(1)

With Stefan number neglected, the temperature field in both the solid phase and the mushy
region is given by (3.7) and the concentration field in the mushy region is

Θ = Θa+
erf(ζ )

erf(λa)
. (4.1)

Equations (3.14a,b) yield

Θa+ = CG(λa)

G(λa) + ε
and Θ ′

a+ = 2λaC

G(λa) + ε
. (4.2a,b)

Evaluating (4.1) at ζ = λb, we obtain Θa+/ erf(λa) = Θb/ erf(λb), which, together with
(4.2a), results in the algebraic equation for the growth constant λa as

[
Θb − C

erf(λb)

erf(λa)

]
G(λa) + εΘb = 0. (4.3)

The condition of marginal equilibrium, (3.16), can be combined with the continuity of
the concentration gradient across the mush/liquid interface to obtain the continuity of the
temperature gradient, i.e. θ ′

b− = θ ′
b+ . From (3.5), (3.10) and the continuity conditions, the

growth constant λb is governed by

ελbF

[
Λ(λb)

(εU )1/2

]
− Γ λbF

[
Λ(λb)

U 1/2

]
+ (1 − Γ )Λ(λb)G(λb) = 0, (4.4)

where

F(λ) ≡ π1/2λ eλ2 erfc(λ). (4.5)

The temperature and concentration at the mush/liquid interface are

θb = 1 − λbF
[
Λ(λb)/U

1/2
]

λbF
[
Λ(λb)/U 1/2

] + Λ(λb)G(λb)
, (4.6a)

Θb = 1 − ελbF
[
Λ(λb)/(εU )1/2

]
ελbF

[
Λ(λb)/(εU )1/2

] + Λ(λb)G(λb)
. (4.6b)

Note that λb is independent ofC since the concentration ratio enters themush/liquid interface
conditions only through the left-hand side of (3.15b), which is, however, equal to zero in the
present case. In Fig. 4 we plot the growth constant λb as a function of U , calculated from
(4.4). Note that a second branch of solutions emerges at U = 1 and that there is a special
value Umax at which the two branches merge together. No solutions exist for U > Umax.
Note that Umax → ∞ as Pr → 0. The present results can be compared with Fig. 4 by
Kyselica and Šimkanin (2017), where finite solutions for λb existed for all values of U .

In Fig. 5 we plot the growth constants λa , calculated from (4.3), for each branch of λb.
Note that for the upper branch of λb all the values of λa are physically realistic, i.e. λa < λb.
For the lower branch, however, there is a special value Umin > 1 such that the values of λa
are physically realistic only for U > Umin. The solutions for 1 < U < Umin are not shown.
The lower portion of the λb branch is technically valid only for U � 2 since our asymptotic
results require λb 
 Pr1/2.
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Fig. 4 Growth constant λb as a function of U , calculated from (4.4) for Pr = 10−2 (solid line) and
Pr = 10−3 (dashed line). Note that a second branch of solutions emerges at U = 1 and that the two
branches merge together at a finite value of U , denoted as Umax. No solutions exist for U > Umax. Note
that Umax → ∞ as Pr → 0. The values of the other parameters are set to ε = 10−2, Γ = 0.5 and C = 2
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Fig. 5 Growth constants λa (the lower pair) and λb (the upper pair) as functions of U , calculated from (4.3)
and (4.4). A logarithmic scale was used on the vertical axis. The values of λa corresponding to both branches
of λb (cf. Fig. 4) are shown—each branch of λa uses the same line type as the corresponding branch of λb .
The values of the other parameters are set to Pr = 10−3, ε = 10−2, Γ = 0.5 and C = 2

4.2 Solutions in the Limit ε → 0

The inverse Lewis number, ε, is typically small owing to the fact that the solute diffusivity is
usually negligible when compared to the heat diffusivity. Since the growth rate of the mushy
region is determined by the heat balances at the interfaces, the mushy region exists even when
the diffusion of solute away from the mush/liquid interface is negligible (cf. Worster 2000),
i.e. when ε = 0. In such a case, no solid region forms between the cooled substrate and the
mushy region (cf. Gewecke and Schulze 2011a for the case of a mushy region with planar
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Fig. 6 Leading-order solution of (4.9), calculated from (4.10), as a function of Γ . Note that Γ measures
the drop of the melting temperature across the system relative to that of the temperature, cf. (2.4d). Note the
singularity in λb as Γ → 1−

interfaces). In the limit ε → 0, a concentration boundary layer of thickness O(ε1/2) forms
ahead of the mush/liquid interface.

Since F(s) ∼ 1 as s → ∞, Eq. (4.4) implies that λb = O(1) as ε → 0 and therefore
Θb → 1 as ε → 0, see (4.6b). From (4.3) we have that λa → 0 as ε → 0; otherwise, we
would obtain that λa > λb, which is not a physical solution. An approximate solution of
(4.3) can be found as

λa = ε

π1/2C erf(λb)
+ O(ε2) as ε → 0. (4.7)

We see from (4.7) that the thickness of the solid phase decreases with C . Note that increasing
C is equivalent to decreasing �C , with C0 fixed.

We can combine (4.7) with (4.2a,b) to obtain the concentration and its gradient at the
mush bottom

Θa+ ∼ 2εC

πC 2 erf2(λb) + 2ε
and Θ ′

a+ ∼ 2π1/2C 2 erf(λb)

πC 2 erf2(λb) + 2ε
. (4.8a,b)

As the limit Pr → 0 is regular for λb, in order to simplify (4.4), we set Pr = 0 so that

εF

[
λb

(εU )1/2

]
− Γ F

(
λb

U 1/2

)
+ (1 − Γ )G(λb) = 0. (4.9)

The solution of (4.9) can be approximated by the solution of the following equation

G(λb) = Γ

1 − Γ
(4.10)

to leading order in ε and U . Since the range of G is (0,∞), there exists a unique solution
of (4.10) for every Γ ∈ (0, 1). Note that Θb → 1 and θb → Γ as ε → 0. The numerical
solution of (4.10) is shown in Fig. 6. Note the singularity in λb as Γ → 1−.
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Fig. 7 Temperature (a) and concentration (b) fields in the liquid phase as functions of ζ , given by (3.5) and
(3.10) for U = 10−1 (solid lines), compared with the asymptotic forms (5.2a, b) for U = 0 (dashed lines).
The values of the other parameters are set to Pr = 10−2, ε = 10−2 and Γ = 0.5

5 Results for U = 0

Though the limit U → 0 is regular, it is instructive to look separately at the case when
U = 0. Such a situation corresponds to setting the far-field velocity, U∞, to zero. In this
parametric regime, we are able to determine the exact scalings of the dimensional positions
of the interfaces with the substrate speedU0, since the dimensional forms for these interfaces
are

a(x) = 2λa (κx/U0)
1/2 and b(x) = 2λb (κx/U0)

1/2 , (5.1a,b)

with both λa and λb independent of U0 when U = 0 since U0 enters the governing equa-
tions only through U . Therefore, with growingU0, the positions of both interfaces decrease
proportionally to U−1/2

0 .
The function f has the same asymptotic expansion as that given in (3.3), with U = 0.

The temperature and concentration fields in the liquid phase can be expressed as

θ ∼ 1 − 1 − Γ

1 − ε
exp

[
− 2λ2b + Pr

λb
(ζ − λb)

]
, (5.2a)

Θ ∼ 1 − ε(1 − Γ )

Γ (1 − ε)
exp

[
− 2λ2b + Pr

ελb
(ζ − λb)

]
, (5.2b)

as Pr → 0. Note that factor ε−1 is present in the exponent of (5.2b), which is in contrast to the
factor ε−1/2 in (3.10). In Fig. 7 we show typical profiles of the temperature and concentration
fields, given by (5.2a, b); shown are also the profiles corresponding to positive values of U .
The growth constant λb is a root of the algebraic equation

G(λb)

(
1 + Pr

2λ2b

)
= Γ − ε

1 − Γ
, (5.3)

which has positive solutions only if Γ > ε. It is straightforward to show that λb = O(1) as
Pr → 0; hence, the condition Pr/λb � λb is satisfied and (3.3) retains its asymptoticity.
For Pr → 0 and ε → 0 Eq. (5.3) reduces to (4.10).
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Fig. 8 Contours of equally spaced levels of the dimensional position (in m) of the mush/liquid interface,
given in (5.1b), for x = 1 m and κ = 5× 10−6 m2 s−1 (cf. Kyselica and Guba 2016). The values of the other
parameters are set to Pr = 10−2, ε = 10−2 and Γ = 0.5. The range of U shown in the plot is 0 ≤ U ≤ 10.
The horizontal axis corresponds to U = 0. Note the non-monotonicity of b as a function of U0 in the region
close to the line U = 10

We can use (5.2b) together with (3.18) to obtain, in dimensionless terms, the total amount
of solute within the mushy region as

∫ λb

λa

(C − Θ)χ ds = λb(C − 1) − εPr(1 − Γ )

2λbΓ (1 − ε)
. (5.4)

Recall that C − Θ = C/�C . The integral in (5.4) measures the redistribution of the solute
in the system. Note that the total amount of solute within the mushy region is determined
dominantly by C , with the other effects being of order O(εPr) as ε, Pr → 0. The average
bulk composition in the mushy region is, to the leading order in small ε, equal to C − 1.

6 Conclusions

In the present study, we have studied the effect of the scaled far-field velocity, U , and the
Prandtl number, Pr , on the mushy region characteristics. The analysis can be compared with
the one given by Kyselica and Guba (2016) of a similar problem without a mushy region: the
dimensionless thickness of the solid phase was O(U 1/2), provided Pr � U . Such a scaling
corresponds to the dimensional thickness being proportional toU 1/2∞ /U0. In the present case,
however, the dimensionless thickness of both the solid andmushy regions is finite asU → 0,
which corresponds to the dimensional thickness proportional to 1/U 1/2

0 . In Fig. 8 we plot the
contours of the dimensional position of the mush/liquid interface, given in (5.1b), for general
values of U , in terms of U0 and U∞. An interesting feature is the non-monotonicity of b as
a function of U0 in the region close to the line U = 10.

In the problem without the mush, the small values of the velocity ratio force the thermal
and compositional boundary layers ahead of the solid/liquid interface to grow as O(U −1/2).
In the system with a mushy region the effect of small velocity ratio on the thermal and
compositional boundary layers is, to leading order, negligible, as shown in Fig. 7.

From our findings, we highlight the integral relationships (3.18) and (5.4) that quantify
the total amount of solute contained within the mushy region. As can be seen from (5.4),
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Fig. 9 Growth constants λa (dashed) and λb as functions of Γ , calculated from (4.3) and (5.3) (left pair),
compared with the growth constants corresponding to the mushy region studied byWorster (1986), calculated
from (4.3) and (4.4), withU = 1. Note that there is a value Γ = Γmin, such that λa = λb . Physically realistic
solutions exist only for Γ > Γmin. The behaviour of λb for higher values of Γ is qualitatively similar to Fig. 6.
The values of the other parameters are set to Pr = 10−3, ε = 10−2 and C = 2

when the Prandtl number is small, the total amount of solute is proportional to C − 1, with
the correction of O(εPr). The O(εPr) effect is weakened when the values of Γ are close
to unity: the resulting small temperature and compositional gradients in the liquid make the
effect of the boundary layer flow less important.

The dimensionless parameter Γ , which is proportional to the ratio of the compositional
and thermal differences across the system, deserves a special comment. It is straightforward
to show that Γ = [TL(C∞) − TL(C0)]/�T and that the right-hand side of (4.10) can be
expressed as a ratio of the driving temperature differences, i.e. [TL(C∞) − TL(C0)]/[T∞ −
TL(C∞)].

In Fig. 9 we plot the growth constants λa and λb as functions of Γ , calculated from (4.3)
and (5.3), together with those corresponding to the mushy region without horizontal pulling,
calculated from (4.3) and (4.4) with U = 1 (cf. Worster 1986; see also the comment at the
end of Sect. 3.1). Note that in both cases there is a critical valueΓ = Γmin for which λa = λb.
For Γ < Γmin we have λa > λb, which is not physically realistic. In Fig. 10 we show Γmin

as a function of U —the values of Γmin are found to attain their maximum values at U = 1.
Thus, the horizontal pulling and the resulting flow in the liquid enhance the formation of a
mushy region: when the system is pulled horizontally, the range of Γ for which the mush
exists is larger than that for the system without pulling.

The fact that there is a value of Γ below which the mushy region does not exist can be
used, together with (2.4d), to derive the bounds on C∞ or T∞. With �C fixed, we have
an upper bound for the far-field temperature for which the mushy region exists: T∞ <

TL(C0) + Γ̂ �C/Γmin. Similarly, with �T fixed, there is an upper bound for the far-field
concentration:C∞ < C0−Γmin�T/Γ̂ . In the situation with horizontal pulling, these bounds
are found to be higher than those in the case without pulling, studied by Worster (1986).

It may be of some interest to extend the present calculation to include the effects of
buoyancy-driven flow in the system. In the present case, we assumed constant density and
hydrostatic pressure; therefore, the flow field relative to the solid portion of the mushy region
was zero. Within the framework of self-similarity, determination of the interacting fields
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Γmin
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0.075

0.100

0.125

0 0.5 1

U

Fig. 10 Minimum value of Γ for which the mushy region exists, Γmin, as a function of U . Two qualitatively
different asymptotic regimes are shown: the solid curve corresponds to Pr � ε, with Pr = 10−3 and
ε = 10−2; the dashed curve corresponds to Pr 
 ε, with Pr = 10−2 and ε = 10−3. Note that Γmin attains
finite values at U = 0. In all computations we set C = 2

would require a suitable choice of the conditions at the mush/liquid interface since the fluid
velocity can be distinct from the velocity of the solid phase dictated by the substrate pulling
and the fluid can eventually flow across the solidifying interface (see Schulze and Worster
2005).
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STEADY NON-CONVECTION STATES IN TERNARY ALLOY

SOLIDIFICATION

M. HURBAN

Abstract. We consider a steady non-convecting state of a mushy layer during

the primary solidification of a ternary alloy. A model, which includes the effects

thermal and solutal diffusion, segregation effects and finite speed of background
solidification is considered. Two types of boundary conditions are applied, either

fixing solute flux or concentration at the bottom of the mush. In the regime of

the same Lewis numbers and segregation coefficients of solutes, explicit solution
using hypergeometric functions was identified. In the limit of large Lewis and the

limit of near constant concentration profile of one solute asymptotic solutions were

presented. The behaviour of the concentration profiles was analysed with respect
to a static stability scenario, i.e. distribution of a mass within liquid.

1. Introduction

The solidification of multicomponent mixtures includes complex phenomena oc-
curring both in natural and industrial processes. Phase change in a solidifying
system proceeds on a solidification interface, which is often morphologically un-
stable. For dilute binary alloys criterion for predicting instability of solidification
interface was presented in [11]. Such instability leads to formation of dendrites –
treelike structures of solid crystal. A zone where liquid mixture and solid crystals
coexist is called a mushy layer. In the work [13] the mushy layer is considered
a continuum with local solid fraction as a function of distance from the cooled
boundary.

We consider setup of directional solidification characterized by a liquid being
forced downward with average speed V ∗ and temperature gradient constant in
the laboratory frame of reference (e.g. [14], [12], [3]). For an aqueous ternary
alloy, a solidifying system is composed of a liquid layer, a primary mush and a
secondary mush, with mushy layers separated by planar interfaces. The primary
mush is characterized by crystals composed of one solute species and presence of
two independent diffusive fields. In the secondary mush crystals are composed of
two solute species and only one independent diffusive field is present.
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When thermal equilibrium is maintained throughout the mushy layer, liquidus
constraint will cause secondary mush to behave like effectively a binary mixture.
The processes ongoing in binary mixtures has been widely described in [15], [7].
To explain most distinctive behaviour of the full ternary model we will analyse
only the processes within the primary mush. This approach was used in [4], [8],
[9], with the aim was to investigate an occurrence of a direct mode of instability
present in a statically stably stratified scenario i.e. when the density of fluid
decreases with height.

The same setup as in [4] was considered in [8], with aim to analyse the joint
limit of small speed of background solidification, small variation concentration
across the primary mush and large Stefan number, with effects of solute rejection
incorporated.

We consider the model from [4], [8], [9] for directional solidification of ternary
mixtures, incorporating thermal and solutal diffusion, segregation effects and finite
speed of the background solidification. Apart from the boundary conditions (BC)
prescribing constant concentrations on the top and the bottom of the primary
mush, we also consider a BC setup with fixed concentration gradients at the bot-
tom. We present analytical solutions for the steady non-convecting state, building
on the results from [10], which consider the Lewis numbers and the segregation
coefficients for both solutes equal.

2. Problem formulation

We consider directional solidification of ternary mixture, which develops two dis-
tinct mushy zones as in [3]. To understand the most complex part of the system
we will adopt the reduction from [4] and [8] to consider only a single primary
mushy layer. The mushy layer is bounded by two planar interfaces, which move
in time at a constant speed V ∗ and having a distance H∗ apart. We will restrict
our inquiry in a steady one dimensional solution without convection, denoted as a
base state of the system of equations described in [4].

Equations governing the base state in coordinate system moving in z∗ direction
with speed V ∗, where which T ∗, C∗1 , C∗2 and φ denotes temperature, concentrations
of two solutes and solid fraction respectively.

−V ∗c̄∗(φ)
dT ∗

dz∗
=

d

dz∗

[
k̄∗ (φ)

dT ∗

dz∗

]
− V ∗L∗ dφ

dz∗
,(1a)

−V ∗ (1− φ)
dC∗j
dz∗

=
d

dz∗

[
D∗j (1− φ)

dC∗j
dz∗

]
− V ∗ (1− kj)C∗j

dφ

dz
, for j = 1, 2,

(1b)

T ∗ = m∗1C
∗
1 +m∗2C

∗
2 ,(1c)

where c̄∗(φ) = c∗sφ + (1− φ) c∗l is the effective specific heat of the mushy layer
with c∗s and c∗l being the constant specific heat in the solid and liquid phases;
k̄∗ (φ) = k∗sφ + (1− φ) k∗l is the effective thermal conductivity with k∗l and k∗s
being thermal conductivity of liquid and solid phase respectively; L∗ is the latent
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heat; D∗j is constant solutal diffusivity in the liquid for species j (diffusion of solute
in the solid is neglected); kj are segregation coefficients and m∗j are liquidus slopes.

The system (1) consists of conservation of energy (1a), conservation of so-
lutes (1b) and liquidus constraint (1c) maintaining thermodynamical equilibrium
throughout the mushy layer.

We consider two types of BC, the first one is the same as used in [4] and [10],
where concentrations of solutes are fixed both at the top and the bottom of the
mushy layer. The second one has fixed concentrations of solutes at the bottom,
and fixed solutal flux at the top. We denote the cases of fixed concentrations and
fixed fluxes CC and FC respectively.

CC : C∗j = C∗jtop, φ = φ0 at z∗ = H∗; Cj = C∗jbot at z∗ = 0,

FC : C∗j = C∗jtop, φ = φ0 at z∗ = H∗;
dC∗j
dz∗

= G∗jbot at z∗ = 0,

for j = 1, 2, where C∗jbot and C∗jtop are prescribed values of solute concentrations
and G∗jbot are values at which solutal fluxes fixed.

It is useful to introduce the quantities T ∗bot, T
∗
top and G∗bot, which by liquidus

constraint satisfy

T ∗bot = T ∗M +m∗1C
∗
1bot +m∗2C

∗
2bot,(2a)

T ∗top = T ∗M +m∗1C
∗
1top +m∗2C

∗
2top,(2b)

G∗bot = m∗1G
∗
1bot +m∗2G

∗
2bot,(2c)

where T ∗M is melting temperature of pure solvent.

2.1. Non-dimensionalisation

For all BC types (CC, FC) we obtain the same system of dimensionless governing
equations. Difference is within definitions of dimensionless quantities. We will em-
ploy non-dimensionalisation as in [4] in which, lengths will be scaled by factor H∗

- height of mushy layer, time by H∗2/κ∗l , where κ∗l = k∗l /c
∗
l is thermal diffusivity

and velocity by κ∗l /H
∗. We introduce dimensionless parameters valid for all BC

types:

V = V ∗H∗/κ∗l , Lej = κ∗l /D
∗
j .(3)

Dimensionless quantities for both BC types are summarized in table 1. Dimen-
sionless version of BC is

CC : Cj (0) = Cjbot, Cj (1) = Cjbot + 1, φ (1) = φ0;

FC :
dCj
dz

(0) = 1, Cj (1) = Cjtop, φ (1) = φ0.

3. Reduced parametric cases: Analytical solutions

In [10] we presented a number of parametric reductions allowing analytical solution
of system (1). Here we will consider the case in which both statically–stably and
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Table 1. Definitions of dimensionless quantities.

Dimensionless
quantity

Type CC Type FC

T (T ∗ − T ∗M ) /
(
T ∗top − T ∗bot

)
(T ∗ − T ∗M ) / (G∗botH

∗)

Cj C∗j /
(
C∗jtop − C∗jbot

)
C∗j /

(
G∗jbotH

∗
)

S L∗/
(
c∗l
(
T ∗top − T ∗bot

))
L∗/ (c∗lG

∗
botH

∗)

mj m∗j

(
C∗jtop − C∗jbot

)
/
(
T ∗top − T ∗bot

) (
m∗jG

∗
jbot

)
/ (G∗bot)

Cjbot C∗jbot/
(
C∗jtop − C∗jbot

)

Cjtop C∗jtop/
(
C∗jtop − C∗jbot

)
C∗jtop/

(
G∗jbotH

∗
)

Tbot (T ∗bot − T ∗M ) /
(
T ∗top − T ∗bot

)

Ttop
(
T ∗top − T ∗M

)
/ (G∗botH

∗)

statically unstably stratified concentration profiles are present, allowing further
study of doubly–diffusing convection in statically–stable region presented in [4].
We will assume the same speed of solute rejection k1 = k2 ≡ k, the same Lewis
number Le1 = Le2 = Le for both solutes and zero Stefan number S = 0. We
will also make assumption of the same material properties of the liquid and solid
phases, namely thermal conductivity k∗s = k∗l and specific heat c∗s = c∗l .The most
important features of this reduction are finite speed of macroscopic solidification
(V 6= 0) and presence of solute rejection effects (k 6= 1).

Under mentioned reductions the dimensionless base state equations (1) take the
form:

−V dT

dz
=

d2T

dz2
,

−V (1− φ)
dCj
dz

=
1

Le

d

dz

[
(1− φ)

dCj
dz

]
− V (1− k)Cj

dφ

dz
, for j = 1, 2,

T = m1C1 +m2C2.

The solution of T depends on the choice of BC type as follows:

T (z) =

{(
δ − e−V z

)
/
(
1− e−V

)
CC(

δ − e−V z
)
/V FC,

where the parameter δ =
(
e−V T (0)− T (1)

)
/ (T (1)− T (0)), which depending on

the type of BC is equal to:

δ =

{
1 + Tbot

(
1− e−V

)
CC

e−V + V Ttop FC.
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Physically admissible range of values for δ is (−∞; 1) and
(
−∞; e−V

)
for CC and

FC type of BC respectively. The solid fraction satisfies

d

dz
ln (1− φ) = − 1

1− φ
dφ

dz
=

V e−V z

−Le(1− k)δ/ (Le− 1) + ηe−V z
,(5)

where the parameter η = (1−k)−1/Le
1−1/Le can take both signs. Note that, as Le→∞,

then η → 1− k, which is positive.
The concentration profiles satisfy

d2Cj
dz2

+

[
d

dz
ln (1− φ) + LeV

]
dCj
dz

+

[
V Le (1− k)

d

dz
ln (1− φ)

]
Cj = 0.(6)

This equation can be transformed to a hypergeometric equation

d2Cj
dξ2

ξ (1− ξ) +
dCj
dξ

[c− ξ (1 + a+ b)]− abCj = 0,(7)

where a = −1, b = −Le (1− k) /η, c = −1/η and

ξ (z) = 1− (Le− 1) η

Le (1− k) δ
e−V z.(8)

Note that (7) is a linear second-order differential equation with three regular sin-
gular points1 ξ = 0, 1 and ∞ as defined in [1]. We consider the case when none
of the numbers c, c− a− b, a− b is equal to the integer. Solution of equations (5)
and (6), then have the form:

φ (z) = 1− (1− φ0) (ξ (1) /ξ (z))
1
η ,(9a)

Cj (z) = αjw1(x) (z) + βjw2(x) (z) for j = 1, 2,(9b)

where wi(x) refers to the i-th independent solution around ξ = x. Their form is
determined by regime of ξ, defined by the values of V , Le, k and Tbot (or Ttop).

For ξ < 0 the expansion around the regular singular point ξ = 0 can be used2

w1(0) = 2F1 (a, b; c; ξ) ,(10a)

w2(0) = ξ1−c2F1 (a− c+ 1, b− c+ 1; 2− c; ξ) .(10b)

When ξ ∼ 1 for all z, then the pair of independent solutions is defined as

w1(1) = 2F1 (a, b; a+ b+ 1− c; 1− ξ) ,(11a)

w2(1) = (1− ξ)c−a−b 2F1 (c− b, c− a; c− a− b+ 1; 1− ξ) .(11b)

1Consider equation of the form P (x) y′′ +Q (x) y′ +R (x) y = 0 and suppose that P , Q and

R are polynomials, and P (x0) = 0. Then x0 is a regular singular point if limx→x0 (x− x0)
Q(x)
P (x)

and limx→x0 (x− x0)2
R(x)
P (x)

are both finite.
2If ξ < −1, the hypergeometric series is not convergent and its analytical continuation along

the negative real axis can be used.
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In the case of large ξ(z), we have

w1(∞) = ξ−a 2F1

(
a, a− c+ 1; a− b+ 1; ξ−1

)
,(12a)

w2(∞) = ξ−b2F1

(
b, b− c+ 1; b− a+ 1; ξ−1

)
.(12b)

The main building block of independent solutions of (7) is the hypergeometric
series

2F1 (a, b; c; ξ) =

∞∑

n=0

(a)n (b)n
(c)n

ξn

n!
,(13)

as defined in [1, p. 563], where (a)n = a (a+ 1) (a+ 2) · · · (a+ n− 1) is the rising
factorial. The rising factorial can be expressed as a ratio of Gamma functions
(a)n = Γ (a+ n) /Γ (a). The hypergeometric series is convergent for |ξ| < 1.

Constants αj , βj (for j = 1, 2) can be expressed as solutions to the system of
algebraic equations depending on type of BC. Note that the choice of BC influences
the general solution of base state only through the parameter group δ. Applying
BC of type CC, we obtain

αj =

w2(x)(1)

w2(x)(0)
Cjbot − (Cjbot + 1)

w2(x)(1)

w2(x)(0)
w1(x) (0)− w1(x) (1)

, βj =
(Cjbot + 1)− w1(x)(1)

w1(x)(0)
Cjbot

w2(x) (1)− w1(x)(1)

w1(x)(0)
w2(x) (0)

,(14)

for j = 1, 2. In FC case, we obtain

αj =

w2(x)(1)

w′
2(x)

(0) − Cjtop
w2(x)(1)

w′
2(x)

(0) − w1(x) (1)
, βj =

Cjtop − w1(x)(1)

w′
1(x)

(0)

w2(x) (1)− w1(x)(1)

w′
1(x)

(0)w
′
2(x) (0)

,(15)

for j = 1, 2. The derivatives of w2(x) can be obtained using the formula from [1,
p. 557]:

d

dξ
ξc−12F1 (a, b; c; ξ) = (c− 1) ξc−22F1 (a, b; c− 1; ξ) .(16)

[10] lists the solutions when the segregation coefficient k attains some special val-
ues. Namely if k = 0 the solution for Cj (z) takes the form of exponential function;
if k = (Le− 1) /Le the solution for Cj (z) takes the form of extended confluent hy-
pergeometric function and when k = 1 the solid fraction is an increasing function
of z (physically non-admissible setup).

3.1. Limiting case: Le→∞
Typically, the Lewis number is much larger than unity. For example in binary
case, the helium–water mixture has Le ∼ 23, while the ethanol–water mixture has
Le ∼ 170.3

Expanding (8) in the limit of large Le, we obtain:

ξ (z) =

(
1− e−V z

δ

)
+

e−V z

δ (1− k)

1

Le
,(17)

3The values of mass diffusivity and thermal diffusivity are from [6], [5], respectively.
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where the second term cannot be omitted because the first term may became
O(1/Le) or smaller due to a combination of relatively small values of V , 1−k and
Tbot ∼ −1 in CC case or Ttop ∼ 0 in FC case.

It is sufficient to consider only two cases ξ < 0 and ξ > 1, because the case
0 < ξ < 1 corresponds to Tbot > −1. The values of V and Tbot (or Ttop) define the
regime of ξ and so determine the pair of independent solutions which should be
used to construct solution. The summary is in table 2. Note that regime of ξ ∼ 1

Table 2. Regimes of ξ with different pairs of independent solutions and parameter constraints

in limit of large Le.

Regime
of ξ

Independent
solutions

Type CC Type FC

ξ < 0 w1(0), w2(0) 1 < −Tbot < 1/
(
1− e−V

)
e−V < −Ttop < e−V /V

ξ > 1 w1(∞), w2(∞) 1/
(
1− e−V

)
< −Tbot e−V /V < −Ttop

is not present within limit of large Le, only apearing in the limit C1bot → −∞.
At first we will consider regime ξ < 0, the appropriate independent solutions

are

w1(0) =

(
1− e−V z

δ

)
[1− Le (1− k)] ,(18a)

w2(0) = ξk/(1−k) (1− ξ)Le 2− k
(1 + Le (1− k))

2 [1 +O (1/Le)] .(18b)

The expression (18a) can be obtained from (10a) using the relation

2F1 (−m, b; c; ξ) =

m∑

n=0

(−m)n (b)n
(c)n

ξn

n!
,(19)

from [1, p. 561], where m is positive integer. Asymptotic expansion for (18b) can
be derived using the Euler linear transformation formula from [1, p. 559]:

2F1 (a, b; c; ξ) = (1− ξ)(c−a−b) 2F1 (c− a, c− b; c; ξ)(20)

and then using the fact from [1, p. 565], that a real-valued hypergeometric function
for fixed a, c, ξ, (c 6= 0,−1,−2, . . .), 0 < |ξ| < 1 and large |b| satisfies

2F1 (a, b; c; ξ) =

[
Γ (c)

Γ (c− a)
(−bξ)−a +

Γ (c)

Γ (a)
ebξ (bξ)

a−c
] [

1 +O
(
|bξ|−1

)]
.(21)

Now we consider ξ > 1, the pair of independent solutions is

w1(∞) = ξ − 1/Le/ (1− k) ,(22a)

w2(∞) = ξ
k−2
1−k (ξ − 1)

Le
+O(1/Le).(22b)

The form (22a) can be obtained from (12a) using (19). The asymptotic expansion
of second independent solution (22b) is obtained, when transform (20) is applied to
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(12b), and then is used the asymptotic expansion for large Le defined by relation
from [1, p. 565]

2F1 (a, b; c; ξ) =

m∑

n=0

(a)n (b)n
(c)n

ξn

n!
+O(|c|−m−1),(23)

where a, b, ξ are fixed and |c| large.
In the following sections we will use the pairs (18a), (18b) and (22a), (22b) to

construct asymptotic expansions for different BC types.

3.1.1. CC type of BC. The leading-order asymptotic expansion of (9) for BC
(14) in the regime ξ < 0, or equivalently 1 < −Tbot < 1/

(
1− e−V

)
, takes the form

φ (z) = 1− (1− φ0) (ξ(z)/ξ(1))
− 1

1−k +O(1/Le),(24a)

Cj (z) =
Cjbot + 1

Tbot + 1
T (z) +

Cjbot − Tbot
Tbot + 1

ϑ (z) +O(1/Le),(24b)

for j = 1, 2, where

ϑ (z) = (ξ (z) /ξ (0))
k/(1−k)

e−V Lez.

The function ϑ (z) is positive and monotonically decreasing for z ∈ [0; 1], and
evaluates to ϑ (0) = 1 and ϑ (1) = O(e−Le). Thus ϑ (1) is exponentially small as

Le → ∞. Note that the importance of the term (ξ (z) /ξ (0))
k/(1−k)

grows when
the term

(
1− e−V z/δ

)
in (17) is notO (1), otherwise ϑ (z) ∼ e−V Lez. The formulae

analogous to (24b) in the regime ξ > 1, or equivalently −Tbot > 1/
(
1− e−V

)
, are

Cj (z) = C1bot
ξ (z)

ξ (1)
+ ϑ (z)

(
ξ (z)

ξ (0)

)− 2
1−k

[
Cjbot − (Cjbot + 1)

ξ (z)

ξ (1)

]
+O(1/Le)

(25)

for j = 1, 2. The formulae (24b) and (25) are asymptotically equivalent if

(
1− e−V

)
(1− k) = O(1) as Le→∞.

The second term of (24b) vanishes as |C1bot−C2bot| is small, in that case the first
term dictates concentration profiles to be proportional to T and hence monotonic.
Therefore non-monotonicity of concentration profile can occur only when difference
|C1bot − C2bot| exceeds some threshold, this will be addressed in §3.4.

In figure 1 we compare the analytical solution with the leading-order solution
(24), showing solid fraction, composition and temperature profiles on insets (a),
(b), (c) respectively. Figure 1(d) shows solution in C2-versus-C1 plane. The good
agreement is seen even for relatively low values of Le. Important property of (24)
is that when k = 0 it reduces to exact solution [10].
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Figure 1. Comparison of the explicit solution calculated from (9) and (14) (solid) and the
leading-order asymptotic solution (24) (dashed) with CC type of BC applied in the regime of

ξ < 0. Parameter values used here are m1 = m2 = 0.5, Le1 = Le2 = 25, k1 = k2 = 0.3,

ks/kl = 1, cs/cl = 1, S = 0, V = 0.1. The BC are C1bot = −2, C2bot = −5 and φ0 = 0.1.

3.1.2. FC type of BC. The leading-order asymptotic expansion of (9) for BC
(15) valid for ξ < 0, or equivalently e−V < −Ttop < e−V /V , has the form

φ (z) = 1− (1− φ0)

(
ξ(z)

ξ(1)

)− 1
1−k

+O(1/Le),(26a)

Cj (z) =
C1top

Ttop
T (z) +

Cjtop − Ttop
Ttop

1

V
(
Le+ k

1−k
1

1−δ

)ϑ (z) +O(Le3)(26b)

for j = 1, 2. For ξ > 1 or equivalently −Ttop > e−V /V , the analogue of (26b) is

Cj (z) =

[
ϑ̃(1)
V − Cjtopq

]
ξ (z) +

[
Cjtop (1− ξ (0))− ξ(1)

V

]
ϑ̃ (z)

ϑ̃ (1) (1− ξ (0))− ξ (1) q
+O(Le3)

for j = 1, 2, where q =
(
k−2
1−k (1− ξ (0))− Leξ (0)

)
/ξ (0) and ϑ̃ (z) =

ϑ (z) (ξ (z) /ξ (0))
− 2

1−k .

3.2. Limiting case: C1bot → −∞
In this section, we consider the limit C1bot → −∞ with C2bot = O(1). By swapping
the solutal indices the results for the limit C2bot → −∞ with C1bot = O(1) can be
obtained.
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In [8], the limit of small solidification speeds V → 0 was considered, subject
to S = S̄/V 2 and Cjbot = Cjbot/V

2 with S̄ and Cjbot both O(1). It has been
shown that in case when Le1 = Le2 = Le, single–solute–diffusive regime, the
ratio of C1bot/C2bot plays a crucial role in determining the linear stability scenario
which the system exhibits. In this limit, for relatively large Le the base state
concentration profiles are qualitatively similar to our findings in this section. The
main difference is in generally smaller parametric space exhibiting non-monotonic
behaviour of concentration profiles.

For large values of C1bot, the scaled coordinate is ξ = 1 +O(1/C1bot), therefore
we will employ two independent solutions (11a) and (11b) around regular singular
point ξ = 1 of (7). The asymptotic expansions of (11a) and (11b) in the limit of
large |C1bot| correct to O(1/C2

1bot) take the form

w1(1) (z) = 1− e−V z

δ
= 1− e−V z

m1C1bot (1− e−V )
+O(C−21bot),(27a)

w2(1) (z) = e−V Lez
[
1− Le− 1

Le+ 1

k

1− k
e−V z

1− e−V
1

m1C1bot
+O(C−21bot)

]
.(27b)

where formulae (27a) and (27b) were obtained using (19) and series of hypergeo-
metric function around zero 2F1(a, b, c, z) = 1 + abz/c + O(z2) respectively. For
φ (z), C1 (z) and C2 (z) we have

φ (z) = φ0 +
1

m1C1bot

(1− φ0) (Le− 1)

(1− k)Le

e−V − e−V z

1− e−V
+O(1/C2

1bot),(28a)

C1 (z) = C1bot −
m2

m1

1− e−LeV z

1− e−LeV
+

1

m1

1− e−V z

1− e−V
+O(1/C1bot),(28b)

C2 (z) = C2bot +
1− e−LeV z

1− e−LeV
+O(1/C1bot).(28c)

It is instructive to examine the behaviour of (28) when product LeV = O(1), while
V → 0 and Le→∞. The leading-order reduces to

φ (z) ∼ φ0 +
1

m1C1bot

(1− φ0)

(1− k)
(z − 1) ,

C1 (z) ∼ C1bot −
m2

m1

(
1− e−LeV z

)
+

z

m1
,

C2 (z) ∼ C2bot + 1− e−LeV z.

It can be observed that the solid fraction is constant at leading-order with the
linear correction term at O(1/C1bot). Concentration profile of solute j with smaller
|Cjbot| exhibits non-monotonic behaviour.
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3.3. Monotonicity of solid fraction

The base-state solid fraction does not possess any local extrema. The physically
admissible solution with dφ/dz < 0 exists provided

δ <
(Le− 1) η

Le (1− k) eV z
.

With CC type of BC applied, the monotonicity of the solid fraction is established
when

m1C1bot +m2C2bot < −
1 + max{Le (1− k) , 1}

(
eV − 1

)

Le (1− k) (eV − 1)
.(30)

Note that, the first two terms of expansion as V → 0 reduce expression (30) to

m1C1bot +m2C2bot <

{
−1− 1

V Le(1−k) Le (1− k) > 1

− 1
V Le(1−k) Le (1− k) < 1.

3.4. Monotonicity of concentration profiles

The base state is statically stable stratified if density of fluid is decreasing func-
tion of z, therefore non-monotonic behaviour of concentration profile can induce
statically unstable situation.

In CC case non-monotonic behaviour depends on the values C1bot and C2bot.
Following calculations present extension of [10] allowing us to evaluate effect of
non–zero segregation coefficient k. In the limit Le → ∞, using asymptotic ex-
pansion formula (24) for base state solution of C1 presented in §3.1.1 we have
computed the boundaries of an area within which, both concentration profiles re-

mains monotone. Boundaries are determined using equations
dCj
dz

∣∣∣
z=0

= 0 for

j = 1, 2. This approach gives us two implicit functions of C1bot, C2bot defined by

C1bot =
TbotΩ− 1

1 + Ω
, C2bot =

TbotΩ− 1

1 + Ω
,(31)

where Ω ≡
(
1− e−V

) [ k(Le−1/(1−k))
Le(1−k)Tbot(1−e−V )+1

− Le
]
. By closer inspection of (31)

and by noting that Tbot = m1C1bot + m2C2bot, it can be seen that it defines
quadratic expression in variables C1bot and C2bot.

In figure 2, three qualitatively different scenarios are depicted: (a) profile of C2

is non-monotonic; (b) – both concentration profiles are monotonic and (c) profile
of C1 is non-monotonic.

3.4.1. Limiting case Le → ∞, V → 0. We consider a limit of small pulling
speeds V and large Lewis numbers defined by Le = L̄e/V with L̄e = O(1) as
V → 0. The assumption 1 − k = O(1) remains intact. Under these assumptions
oblique asymptote to implicit curves (31) as C2bot → −∞ we have

C1bot =
1 +m2L̄eC2bot

m2L̄e− 1
+

k

(1− k)
(
L̄e− 1

) (
m2L̄e− 1

) ,
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Figure 2. This plot shows classification of qualitatively different compositional profiles in de-

pendence on concentration BC in the C2bot-versus-C1bot plane. Lines along which the profiles
change their monotonic behaviour were determined using asymptotic result (31). In the grey re-

gion at the top right corner the model is not physically meaningful. Three qualitatively different

scenarios are depicted with BC as shown. Parameters used were Le = 50, k = 0.7, V = 0.1,
φ0 = 0.1 and m1 = 0.5.

where the first term is correspond to results from [10], where k = 0 and the second
term represents a correction when k > 0. Note that, as k → 1, the region of
monotonicity increasingly changes it’s size. The sign of m2L̄e− 1 defines, whether
it increases or decreases. The effect of non-zero segregation coefficients on the
monotonicity of concentration profiles can be observed in figure 3. When Le is
relatively low, sensitivity to change in segregation coefficient is significant. As
Le→∞ effects of non-zero segregation coefficients diminish.

3.4.2. Parametric dependence of the region of static stability. When den-
sity of the liquid is depends on density of solutes, the position of local extreme of
the concentration profile corresponds to a height at which the stratum of liquid
with statically unexpected density is located. In the limit Le → ∞, the position
can be computed using (24) and (26) for CC and FC types of BC respectively

zCC =
1

V (Le− 1)
ln

[
Cjbot − Tbot
Cjbot + 1

Le
(
1− e−V

)]
,(32)

zFC =
1

V (Le− 1)
ln

[
Cjtop − Ttop

Cjtop

Le (1− δ)
Le (1− δ) + k/1− k

]
.(33)
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Figure 3. Plot depicting a shape of statically stable region in the C2bot-versus-C1bot plane for
different values of Le and k. The solid line corresponds to k = 0.1 and dashed line corresponds

to k = 0.9. Other parameters are fixed at V = 0.1, m1 = 0.5, φ0 = 0.1.

Figure 4. Plot of (35) in the plane Le-versus-V . In the grey region both concentration profiles

are always monotonic, while in the white region there always exist BC set-up in which one

of the concentration profiles is non–monotonic. Inset (a) shows case when set of BC allowing
non–monotonic concentration profile is bounded. In inset (b) set of BC allowing non–monotonic

behaviour covers alse limiting cases C1bot → ∞ while C2bot = O(1) and C2bot → ∞ while

C1bot = O(1). The results are shown for m1 = m2 = 0.5.

When C1bot → −∞ is considered the local extreme of the concentration profile
computed from (28):

zCC =
1

V (Le− 1)
ln

[
m2Le

(
1− e−V

)

(1− e−LeV )

]
,(34)

is the same as the one from limit C1bot → −∞ of expression (32). This representa-
tion defines parametric combination of Le, V and m2 for which both concentration
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profiles are monotonic independent of the choice of BC

m2Le
(
1− e−V

)
. 1,(35)

which holds for all values of k satisfying 1 − k = O(1). Figure 4 shows grey and
white region in the Le-versus-V plane divided by the line m2Le

(
1− e−V

)
= 1.

Insets in this figure show representative shapes of BC sets allowing non-monotonic
concentration profiles. In the grey region the case (a) shows a bounded set of BC
which allows non-monotonic concentration profile. Therefore when C1bot → −∞
monotonic behaviour of concentration profiles is expected.

In the white region the case (b) shows that BC are divided by a linear relation,
as was observed by numerical resuts in [4]. Therefore when C1bot → −∞ non-
monotonic behaviour of attributable concentration profile is expected.

4. Conclusion

We analysed the model of solidification of primary mushy layer described in [4],
while considering two different types of BC. The CC type was used in [4] and FC
type introduced to expand range of possible scenarios.

We considered finite macroscopic speed of solidification V . Explicit solution
using hypergeometric function was obtained. In §3.1 we construct the asymp-
totic expansion in the limit of large Lewis number Le. Presented leading-order
asymptotic expansions show very good accuracy even for a low values of Le.

In §3.2 we considered the limit of large |C1bot| causing asymmetry in BC result-
ing in non-monotonic C1 profile. This result can be compared with [8] where limit
of jointly large |C1bot| and |C2bot| is considered. Notable feature of obtained ex-
pansions is that they preserve non-monotonic behaviour of concentration profiles.
Non-monotonic behaviour of concentration profiles may lead to statically unstable
stratification of fluid, therefore play important role in onset of convection originat-
ing in mushy layer. When appropriate solutal expansion coefficients considered,
the results from §3.4 identify the critical lines of static stability. We show that the
critical lines are in general non-linear and that in this case approach the oblique
asymptote as Le→∞.
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